tceic.com
学霸学习网 这下你爽了
赞助商链接
当前位置:首页 >> 英语考试 >>

2011AMC10美国数学竞赛B卷


2011AMC10 美国数学竞赛 B 卷

2011 AMC10 美国数学竞赛 B 卷 1. What is (A) -1
2 + 4 + 6 1+ 3 + 5 ? ? 1+ 3 + 5 2 + 4 + 6 5 7 (C) (B) 36 12

(D)

147 60

(E)

43 3

2. Josanna’s test scores to date are 90, 80, 70, 60, and 85. Her goal is to raise here test average at least 3 pints with her next test. What is the minimum test score she would need to accomplish this goal? (A) 80 (B) 82 (C) 85 (D) 90 (E) 95

3. At a store, when a length is reported as x inches that means the length is at least x-0.5 inches and at most x+0.5 inches. Suppose the dimensions of a rectangular tile are reported as 2 inches by 3 inches. In square inches, what is the minimum area for the rectangle? (A) 3.75 (B) 4.5 (C) 5 (D) 6 (E) 8.75

4. LeRoy and Bernardo went on a week-long trip together and agreed to share the costs equally. Over the week, each of them paid for various joint expenses such as gasoline and car rental. At the end of the trip, it turned out that LeRoy had paid A dollars and Bernardo had paid B dollars, where A<B. How many dollars must LeRoy give to Bernardo so that they share she costs equally? (A)
A+ B 2

(B)

A? B 2

(C)

B?A 2

(D) B ? A

(E) A + B

- 1 -

2011AMC10 美国数学竞赛 B 卷

5. In multiplying two positive integers a and b, Ron reversed the digits of the two-digit number a. His erroneous product was 161. What is the correct value of the product of a and b? (A) 116 (B) 161 (C) 204 (D) 214 (E) 224

6. On Halloween Casper ate 1/3 of his candies and then gave 2 candies to his brother. The next day he ate 1/3 of his remaining candies and then gave 4 candies to his sister. On the third day he ate his final 8 candies. How many candies did Casper have at the beginning? (A) 30 (B) 39 (C) 48 (D) 57 (E) 66

7. The sum of two angles of a triangle is 6/5 of a right angle, and one of these two angles is 30°larger than the other. What is the degree measure of the largest angle in the triangle? (A) 69 (B) 72 (C) 90 (D) 1024 (E) 108

8. At a certain beach if it is at least 80℉and sunny, then the beach will be crowded. On June 10 the beach was not crowded. What can be concluded about the weather conditions on June 10? (A) The temperature was cooler than 80℉ and it was not sunny. (B) The temperature was cooler than 80℉ or it was not sunny. (C) If the temperature was at least 80℉, then it was sunny.

- 2 -

2011AMC10 美国数学竞赛 B 卷

(D) If the temperature was cooler than 80℉, then is was sunny. (E) If the temperature was cooler than 80℉, then it was not sunny.

9. The area of △EBD is one third of the area of 3-4-5 △ABC. Segment DE is perpendicular to segment AB. What is BD? (A)
4 3

(B)

3

(C)

9 4

(D)

4 3 3

(E)

5 2

10. Consider the set of numbers {1, 10, 102, 103……1010}. The ratio of the largest element of the set to the sum of the other ten elements of the set is closest to which integer? (A) 1 (B) 9 (C) 10 (D) 11 (E) 101

11. There are 52 people in a room. What is the largest value of n such that the statement “At least n people in this room have birthdays falling in the same month” is always true? (A) 2 (B) 3 (C) 4 (D) 5 (E) 12

12. Keiko walks once around a track at exactly the same constant speed every day. The sides of the track are straight, and the ends are semicircles. The track has a width of 6 meters, and it takes her 36 seconds longer to walk around the outside edge of the track than around the inside edge. What is Keiko’s speed in meters per second?

- 3 -

2011AMC10 美国数学竞赛 B 卷

(A)

π
3

(B)

2π 3

(C) π

(D)

4π 3

(E)

5π 3

13. Two real numbers are selected independently at random from the interval [-20, 10]. What is the probability that the product of those numbers is greater than zero? (A)
1 9

(B)

1 3

(C)

4 9

(D)

5 9

(E)

2 3

14. A rectangular parking lot has a diagonal of 25 meters and an area of 168 square meters. In meters, what is the perimeter of the parking lot? (A) 52 (B) 58 (C) 62 (D) 68 (E) 70

15. Let @ denote the “averaged with” operation: a @ b = distributive laws hold for all numbers x, y, and z? I. II. III.
x @( y + z ) = ( x @ y ) @( x @ z ) x @( y + z ) = ( x + y ) @( x + z ) x @( y@z ) = ( x @ y ) @( x @ z )

a +b . Which of the following 2

(A) I only

(B) II only

(C) III only

(D) I and III only (E) II and III only

16. A dart board is a regular octagon divided into regions as shown. Suppose that a dart thrown at the board is equally likely to land anywhere on the board. What is probability that the dart lands within the center square? (A)
2 ?1 2

(B)

1 4

(C)

2? 2 2

- 4 -

2011AMC10 美国数学竞赛 B 卷

(D)

2 4

(E) 2 ? 2

17. In the given circle, the diameter EB is parallel to DC, and AB is parallel to ED. The angles AEB and ABE are in the ratio 4:5. What is the degree measure of angle BCD? (A) 120 (D) 135 (B) 125 (E) 140
D C A

(C) 130
E B

18. Rectangle ABCD has AB=6 and BC=3. Point M is chosen on side AB so that ∠AMD=∠CMD. What is the degree measure of ∠AMD? (A) 15 (B) 30 (C) 45 (D) 60 (E) 75

19. What is the product of all the roots of the equation (A) -64 (B) -24 (C) -9 (D) 24 (E) 576

5 x + 8 = x 2 ? 16 ?

20. Rhombus ABCD has side length 2 and ∠B=120°. Region R consists of all points inside the rhombus that are closer to vertex B than any of the other three vertices. What is the area of R? (A)
3 3

(B)

3 3

(C)

2 3 3

(D) 1 +

3 3

(E) 2

21. Brian writes down four integers w>x>y>z whose sum is 44. The pairwise positive

- 5 -

2011AMC10 美国数学竞赛 B 卷

differences of these numbers are 1, 3, 4, 5, 6, and 9. What is the sum of the possible values for w? (A) 16 (B) 31 (C) 48 (D) 62 (E) 93

22. A pyramid has a square base with sides of length land has lateral faces that are equilateral triangles. A cube is placed within the pyramid so that one face is on the base of the pyramid and its opposite face has all its edges on the lateral faces of the pyramid. What is the volume of this cube? (A) 5 2 ? 7 (B) 7 ? 4 3 (C)
2 2 27

(D)

2 9

(E)

3 9

23. What is the hundreds digit of 20112011 ? (A) 1 (B) 4 (C) 5 (D) 6 (E) 9

24. A lattice point in an xy-coordinate system in any point (x, y) where both x and y are integers. The graph of y = mx + 2 passes through no lattice point with 0 < x ≤ 100 for all m such that (A)
51 101 1 < m < a . What is the maximum possible value of a? 2 50 51 52 13 (B) (C) (D) (E) 99 100 101 25

25. Let T1 be a triangle with sides 2011, 2012, and 2013 for n ≥ 1 , if Tn=△ABC and D, E, and F are the points of tangency of the incircle of △ABC to the sides AB, BC and AC, respectively, then Tn+1 is a triangle with side lengths AD, BE, and CF, if it exists. What is the perimeter of the last triangle in the sequence (Tn)? - 6 -

2011AMC10 美国数学竞赛 B 卷
1509 8 1509 32 1509 64 1509 128 1509 256

(A)

(B)

(C)

(D)

(E)

- 7 -


推荐相关:

2011年-AMC10数学竞赛A卷-附中文翻译和答案.doc

-7- 2011AMC10 美国数学竞赛 A 卷 (A) 11 (B) 12 (

2011AMC10美国数学竞赛B卷.doc

2011AMC10美国数学竞赛B卷 - 2011AMC10 美国数学竞赛 B 卷 2011 AMC10 美国数学竞赛 B 卷 1. What is (A) -1 2 + 4 + 6 1+ 3 ...

AMC10美国数学竞赛真题2009B卷.doc

AMC10美国数学竞赛真题2009B卷 - Problem 1 Each mor

AMC10美国数学竞赛真题2006B卷.doc

AMC10美国数学竞赛真题2006B卷 - Problem 1 What is

AMC10美国数学竞赛真题2003B卷.doc

AMC10美国数学竞赛真题2003B卷 - Problem 1 Which of

AMC10美国数学竞赛真题2005B卷.doc

AMC10美国数学竞赛真题2005B卷 - Problem 1 A scout

2011AMC10美国数学竞赛A卷附中文翻译和答案.doc

2011AMC10美国数学竞赛A卷附中文翻译和答案 - 2011AMC10 美国数学竞赛 A 卷 2011AMC10 美国数学竞赛 A 卷 1. A cell phone plan costs...

2011AMC10美国数学竞赛A卷 中文翻译及答案.doc

2011AMC10美国数学竞赛A卷 中文翻译及答案 - 2011AMC10 美国数学竞赛 A 卷 1. 某通讯公司手机每个月基本费为 20 美元, 每传送一则简讯收 5 美分(一美 元=...

高中一年级美国数学竞赛试题(简称AMC10)2012年B卷39617197.doc

高中一年级美国数学竞赛试题(简称AMC10)2012年B卷39617197 -

2009 AMC10美国数学竞赛B卷.doc

2009 AMC10美国数学竞赛B卷_理学_高等教育_教育专区。2009AMC10 美国数学竞赛 B 卷 2009 AMC10 美国数学竞赛 B 卷 1. Each morning of her five-day work...

2010AMC10美国数学竞赛A卷.doc

2010AMC10美国数学竞赛A卷 - 2010AMC10 美国数学竞赛 A 卷 2010 AMC10 美国数学竞赛 A 卷 1. Mary’s top book shelf holds fi...

2008 AMC10美国数学竞赛B卷.doc

2008 AMC10美国数学竞赛B卷_数学_初中教育_教育专区。2008AMC10 美国数学竞赛 B 卷 2008 AMC10 美国数学竞赛 B 卷 1. A basketball player made 5 baskets ...

2010-2014AMC 10 试题及答案汇总.pdf

五年美国数学竞赛AMC-10的试题汇总及答案 2010 AMC 10-A Problem 1 Mary’s ...2011 AMC 10-B Problem 1 What is ? Problem 2 Josanna's test scores to...

高中一年级美国数学竞赛试题(简称AMC10)2012年B卷.doc

高中一年级美国数学竞赛试题(简称AMC10)2012年B卷 - 该试题对有意高中

AMC10美国数学竞赛讲义.doc

AMC10美国数学竞赛讲义 - 有五大部分的详细简绍,还有相关真题的练习... AMC10美国数学竞赛讲义_学科竞赛_初中教育_...>b >c such that a -b -c +ab=2011 ...

美国数学邀请赛AMC_10 2000.pdf

美国数学邀请赛AMC_10 2000 - USA AMC 10 2000 1 I

2011AMC10美国数学竞赛A卷.doc

2011AMC10美国数学竞赛A卷 - 2011AMC10 美国数学竞赛 A 卷 2011AMC10 美国数学竞赛 A 卷 1. A cell phone plan costs $20 eac...

2004美国数学竞赛题更正.doc

2004美国数学竞赛题更正 - 5th AMC 10 A 2004 5th AMC 10 A 2004 1. 你与 5 位朋友要为慈善捐款筹募 1500 元, 若每一个人要 筹募的金额相...

2010AMC10美国数学竞赛B卷.doc

2010AMC10美国数学竞赛B卷 - 2010AMC10 美国数学竞赛 B 卷 2010 AMC10 美国数学竞赛 B 卷 ? 1. What is 100 100 ? 3)(100 100...

2000-2012美国AMC10中文版试题及答案.doc

2000到2012年AMC10美国数学竞赛 2000-2012美国AMC10...(B) 5.06 (C) 6.24 (D) 7.42 (E) 8.77 ...(A) 2011 (B) 2012 (C) 2013 (D) 2015 (E...

网站首页 | 网站地图
All rights reserved Powered by 学霸学习网 www.tceic.com
copyright ©right 2010-2021。
文档资料库内容来自网络,如有侵犯请联系客服。zhit325@126.com