tceic.com
学霸学习网 这下你爽了
当前位置:首页 >> 文学研究 >>

试论锂离子电池极片的轧制及电池极片轧机

试论锂离子电池极片的轧制与电池极片轧机
——邢台朝阳机械制造有限公司 撰稿人: 曹建礼

一、锂离子电池的历史沿革 人们往往把锂离子电池称为锂电池, 其实锂离子电池从严格意义上讲只是锂 电池的一种。而锂电池是指电化学体系中含有锂的电池,大致可分为两类:锂金 属电池和锂离子电池。锂金属电池是由金属锂或铝合金为负极材料,使用非水电 解 质 溶 液 的 电 池 , 其 发 明 者 为 伟 大 的 发 明 家 爱 迪 生 。 1970 年 埃 克 森 的 M.S.whittingham 采用硫化钛为正极材料,金属锂作为负极材料,制成首个锂电 池。由于锂金属的化学特征非常活泼,使锂金属的加工、使用及保存,对环境的 要求非常苛刻,因此,金属锂电池自发明后长期没有得到商业化应用。直到 1982 伊利诺伊理工大学(the Illtnois Institute of technology)的 R.R.Agarwal 和 J.R.Selman 发现锂离子具有嵌入石墨的特性,此过程是快递的,并且可逆。 1991 年,首个商用锂离子电池在日本索尼研制成功,该锂离子电池以炭材料为 负极,以含锂的化合物作为正极,在充放电过程中,没有金属锂存在,只有锂离 子。当对电池进行充电时,电池的正极上有锂离子生成,生成的锂离子经过电解 液运动到负极,而负极的碳呈层状结构,它有很多微孔,达到负极的锂离子就嵌 入到碳层的微孔中,嵌入的锂离子越多,充电容量越高。同理,当对电池进行放 电时,嵌在负极碳层中的锂离子脱嵌,又运动回正极,回正极的锂离子越多,放 电容量越高,通常所说的电池容量指的就是放电容量。随后,适合作正负极的材 料也越来越多。正极材料有钴酸锂,碳酸锂,磷酸铁锂,三元材料等。负极材料 有天然石墨,人工石墨,中间相碳微球,石油焦,碳纤维,热解树脂等。 二、锂离子电池的构成

锂电池分为液态锂离子电池(LIB)和聚合锂离子电池(PLB)二类。从结 构上讲,锂离子电池由锂离子电芯、电解液、保护电路(PCM)及外壳部分组成。 电芯则由正极、负极以及隔膜组成。正极的组成部分为正极材料(如磷酸铁锂) +导电剂+粘合剂(PVDF)+集流体(铝箔) ,负极的组成部分为石墨+导电剂+增 稠剂(CMC)+粘结剂(SBR)+集流体(铜箔) 。正极和负极在业界内一般称为 电池极片,为了提高电池极片表面材料的密度及厚度的一致性,正负极片在涂布 工序之后须进行滚压,此工序称为电池极片的轧制。 三、锂离子电池极片的轧制 电池极片轧制的过程是电池极片由轧辊与电池极片间产生的摩擦力拉进旋 转的轧辊之间,电池极片受压变形的过程。电池极片的轧制不同于钢块的轧制, 轧钢的过程是一个铁分子沿纵向延伸和横向宽展的过程, 其密度在轧制过程中不 发生变化;而电池极片的轧制是一个正负极板上电池材料压实的过程,其目的在 于增加正极或负极材料的压实密度,合适的压实密度可增大电池的放电容量,减 小内阻,减小极化损失,延长电池的循环寿命,提高锂离子电池的利用率。经过 试 验 , 合 适 的 正 极 材 料 压 实 密 度 约 在 2.8 g / cm3 ? 3.4 g / cm3 之 间 , 负 极 的 约 为
1.5 g / cm3 。但压实密度的过大或过小时,不利锂离子的嵌入或脱嵌。因此,电池

极片实施滚压时,轧制力不宜过大也不宜过小,应符合电池极片材料的特征。极 片过压后,一般会出现极片上的材料剥落、粘辊、极片表面平直度差、极片硬化、 吸液性差不良现象,导致极片分切时毛刺出现几率大、微短路、低电压、负极表 面金属锂的析出和电池容量比下降等不良现象。因此,电池极片的轧制须满足下 列几个条件:1、降低极片在轧制过程中的延伸量和宽展量,并减少微孔架构的 破坏;2、保证极片轧制厚度一致性及极板平整度;3、减少极片在轧制后表面材

料的反弹率。4、合适的轧制力。目前,轧制力的大小一般为经验值,由各厂家 经试验给出。 电池极片轧制的辅助措施一般为给极片施加一定的张力及给电极片实施热 轧。在轧制过程中给极片施加一定的张力,可改变极片的塑性曲线斜率,使在不 改变辊缝的情况下,保持极片轧后其厚度的一致性。 四、影响电池极片轧机辊压精度的主要因素 影响电池极片轧机轧制厚度的因素主要有以下几项: 1)轧制力 2)机座的刚度 3)轧辊因弯曲力和剪切力而引起的挠度 4)轧辊的形位公差精度 5)轧辊的弹性压扁 6)电池极片的原始厚度 7)轧制中心线的一致 8)张力 9)轧制温度 10)轧制速度 下面就以上影响电池极片辊压精度的主要因素简单分项论述一下。 轧制压力,是电池极片受压变形时电池极片作用于轧辊上总压力的垂直分 量。实验证明,单位压力在变形区内的分布是不均匀的,且不便计算。因此,要 得到较准确的数据,就需要用实际测量的方法。影响轧制压力的主要因素有:1、 电池极片的绝对压下量;2、轧辊直径;3、电池极片的宽度;4、电池极片的初

始厚度;5、轧制温度;6、轧辊与电池极片间的摩擦系数;7、电池极片的材料 组分;8、轧制速度。电池极片的压下量,一般为 30%-35%,压下量越大,所需 的轧制力就越大。在其他条件一定时,增大或减小轧辊的直径,会改变轧辊和被 轧电池极片的接触面积,增大或减小轧辊与电池极片的外摩擦力,进而使轧制力 增大或减小。 谈到机座的刚度问题,就涉及到机座的弹性变形。机座的弹性变形主要包括 轴承座、压下或压上装置等零件产生的压缩变形,机架的拉伸变形等。提高轧机 机座刚度办法为:增加牌坊的横截面积、缩短应力回线的距离、增大轧辊的辊身 直径、给轧机在轧制前施加预应力等。 轧辊因弯曲力和剪切力而引起的挠度, 是影响电池极片横向厚度差的主要因 素。电池极片的板型控制包括电池极片的平直度、横截面凸度(极片凸度)和边 部减薄量三项内容。极片的平直度是指电池极片纵向形状平直程度,即电池极片 纵向有无波浪形或瓢曲。一般是电池极片轧制时,因纵向延伸量不均匀造成的, 而从实质上看,是电池极片内部产生了不均匀的残余应力。电池极片凸度是电池 极片沿宽度方向中心处厚度与边部处厚度的厚度差,也可称为横向厚差。边部减 薄量是在电池极片轧制时发生在极片边部的一种特殊现象, 发生此现象的原因有 2 个:1)电池极片与轧辊的压扁量,在轧件边部明显减小;2)轧件边部横向流 动要比内部容易。这也进一步降低了极片边部的轧制力及其与轧根的压扁量,使 轧件边部减薄量增加。除设定一定的辊型来控制板型外,板型控制的传统方法有 两种:辊温控制法和液压弯辊控制法。辊温控制法由于轧辊本身热容量大,升温 或降温都需要较长的过渡时间, 而急冷急热又易使轧辊损坏, 故此方法不常采用。 液压弯辊法是将液压缸压力作用在轧辊辊径处使轧辊产生附加弯曲, 以补偿由于

轧制力和轧辊温度等因素的变化而产生的轧辊有载辊缝的变化, 从而获得良好的 板型。但对于电池极片轧辊来说,由于轧辊的长径比,也就是轧辊辊身长度 L 与 轧辊直径 D 的比值,即 L/D 的比值一般小于或等于 1,实施液压弯辊效果不言自 明,而且,液压弯辊要受到轧辊轴承寿命和电池极片轧辊特殊构造及轧辊局部受 力集中等因素的限制。自 20 世纪 70 年代以来,轧钢行业的板型控制技术和具有 较好板型控制能力的新型板带轧机得到了较大发展。其技术路线方向为:一、增 加有载辊缝的刚度;二、加大轧辊原始辊缝的调节范围。采用提高辊缝的刚度系 数来增加板型控制能力,此种办法,显然是不能以恒定的轧辊原始辊型来适应各 种轧制情况的,为了使轧辊原始辊型(或有载辊型)能适应轧制情况的变化而作 相应的变化,具体到电池极片轧机的板型控制上,目前能够采取的措施为加大轧 辊辊径以便增加有载辊缝的刚度。至于加大轧辊原始辊缝的调节范围,国内还处 于方案论证阶段。但在轧钢领域,不论是 HC 轧机、UC 轧机、CVC 轧机、PC 轧机、 还是 VC 轧机,都是通过轧辊的轴向移动或轧辊辊型上的凸度变化来调整轧机的 有载辊缝,使其抵消由轧制力引起的轧辊弹性变形,以获得良好的板型。此技术 在电池极片轧机上的应用还处于研发阶段。 轧辊的偏心直接会对电池极片的滚压精度产生影响。不过,轧辊在轧制过 程中会发生弹性压扁现象。因此,轧辊的偏心在一定的范围内不会对电池极片的 滚压精度产生大的影响,这一点可以通过计算加以验证。下面以直径 0.5m 的电 池极片轧机为例,轧制力为 1500kN 时,轧辊的弹性压扁量。 轧辊之间的弹性压扁量 δ = θ qLn0.97 其中:θ = 2k
k= 1? r2 πE

2D θq

r 为轧辊材料的泊松比,9Cr2Mo 的泊松比为 0.3;

E 为轧辊的弹性模量,其值为 2.058 ×1011 Par;q 为作用在轧辊辊身上的单位负荷。
q= p L

其中 p 为轧制力,1500Kn;L 为轧辊的辊身长度,0.55m;D 为轧

辊直径,0.5m,则:
k= 1? r2 1 ? 0.32 = π E 3.14 × 2.058 ×1011 q= p 1500000 = L 0.55

两轧辊之间的弹性压扁量为:
2 (1 ? 0.32 ) 2D 1500000 = × × Ln0.97 × δ= θ q ln 0.97 11 θ q 3.14 × 2.058 ×10 0.55 2 × 0.5 2 (1 ? 0.32 ) 1500000 × 11 3.14 × 2.058 × 10 0.55

= 0.00009022334259 ( m ) = 90.22334259um

则上辊或下辊的弹性压扁量为: 90.22334259 ÷ 2 ≈ 45.1116713(um) 轧辊的辊身直径从 0.5m 变为 0.5000003m(即轧辊的直径增大了 3um)时,轧 辊的弹性压扁量从 45.1116713um 增大到 45.1116934um,增加了 0.0000221um,从 增加的数值来看,增量可以忽略不计。由此可以得出这样的结论:轧辊装机辊跳 在一定小范围内的变化,不会影响轧机的滚压精度,且轧机的滚压精度在范围上 应小于轧机的装机辊跳精度。轧机的装机辊跳与轧机的滚压精度,其具体的函数 关系,还有待实验与论证。 现在的涂布技术,涂布精度越来越高,涂布厚差可控制到±0.001um,而电 池极片的轧制过程是一个电池材料被压实的过程,因此,这样级别的厚度差别对 轧件轧后的厚度影响可以忽略不计。 在电池极片轧制过程中,须保持轧制中心线的一致性。一旦两个轧辊轴线相 交叉,轧辊辊缝即发生变化,离轧辊轴线交叉点愈远,其辊缝就变得愈大,而且 辊缝的变化也与轧辊轴线的交叉角有关。还有一种情况是,两个轧辊轴线前后错 开,这样会造成轧制力不均衡。以上两种情况,都会影响电池极片的轧制厚度与

板型,严重时,还会造成电池极片轧机的零部件损坏。 调整电池极片的张力可改变电池极片材料的塑性, 进而对电池极片的轧制厚 度进行控制。但为了防止拉断电池极片,电池极片张力的调整范围不宜过大。 电池极片的轧制速度,主要跟轧机的结构和强度、减速电机的转速及转矩、 设备的机械化与自动化水平等一系列因素有关。另外,轧制速度的变化影响到轧 制温度、张力以及轧辊与电池极片的摩擦系数等因素。通过控制轧制速度,可控 制电池极片的轧制厚度。至于电池极片的热轧问题,请大家参考《浅述电池极片 垫轧对锂离子电池品质的影响》一文。 五、电池极片轧机 当前, 国内外锂电池生产厂家基本上在电池极片的滚压工序上实现了全自动 连续轧制。辊压机的辊径从以前的 200、300、400、500、600 向 800、1000 增 进; 辊压精度从以前的±0.005mm、 ±0.003mm 向±0.002mm 甚至±0.001mm 提高; 辊压速度从以前的每分钟几米到每分钟几十米的速度发展。在这里须说明的是: 轧辊的辊径越大, 其滚压过程越近乎平压。 根据前文所述的电池极片滚压条件 1, 大辊径辊压机减小极片在滚压时的压入角,降低极片的纵向延伸量及横向宽展 量,使极片的涂层材料的微观结构不受破坏,不影响注液后极片的吸液量,使正 负极片之间离子能正常的嵌入及脱嵌。 同时也避免极片以后分切时因极片内部应 力的释放而产生矩蛇形及翻转现象。另一方面,随着动力电池及储能电源的蓬勃 发展。锂离子单体电池也从最早的 18650 到 32650,有的厂家甚至把单体电池直 径做到了四十几,而且动力电池模块往往是几十个甚至几百个电池组合到一起, 这就意味着,它对电池在充放电时电压、电流上的一致性的要求也就越发严格。 归结到电池极片的轧制上,首先得保证电池极片厚度上、板型上的一致性。

电池极片轧机以发展的角度来讲是从轧钢机械演变过来的。一般由机架部 分、传动部分及电控部分组成。其种类大致可分为四种类型:1、普通型;2、无 牌轧机,也叫短应力线轧机;3、短变应力线轧机;4、AGC 轧机。若以传动方 式的不同又可分为单电机驱动,和双电机驱动两种类型。下面就谈一谈无牌坊极 片轧机, 短变应力轧机及 AGC 轧机在结构上的不同之处和其轧制功能上的差异。 无牌坊轧机即短应线轧机,这种轧机的结构与普通轧机的不同。为了取得短 应力线效果,它去掉了牌坊,由 4 个拉杆、上下轧辊及轴承座、螺母、压上装置、 机床以及传动装置组成,是一种高刚度轧机。刚度之所以高,是因为采用了短应 力线的结构。应力线是指轧制压力所经过的路线,其长度为工作机架中受力零件 的长度之和。如普通型极片轧机,轧制时轧制力作用在轧辊上,再经过轴承、轴 承座、压上或压下装置传给机架,应力作用线较长。短应力线轧机改变了工作机 床的传统结构, 使协调变形的边界线从牌坊的中心转移到预应力拉杆与锁紧螺母 之间,缩短了应力线的长度,提高了机床的刚度系数。根据轧机机架的弹跳方程 h≈S0+ 可知,机床刚度系数愈大,机床刚度愈好则机架的弹性变形愈小,可使 轧件获得较高的尺寸精度,这对极片轧机大为重要。 而短变应力线轧机不像短应力线轧机那样, 为缩短应力线长度而放弃了赖以 支撑的牌坊, 短变应力线轧机注重的是真正影响轧辊辊缝变化的那部分受力零件 的刚度系数, 是一种发展了的预应力轧机。 它的辊缝由可变厚度的中间斜楔调整, 轧制力直接由压上和压下液压缸施压。在轧机机座中,除轧辊外,轧制工作前全 部机座构件均承受预紧力,产生了预压缩或预拉伸变形。当承受轧制力作用的同 时,机座是一个静不定受力系统。中间承压件的重要作用为使协调变形边界从一 般预应力轧机机架上下边缘,一下子移动到了轧辊轴承外圈,这样一来,其轧制
p c

应力比光牌坊轧制的轧制应力线还短, 而且中间承压件、 轧辊轴承的受力面积大, 长度短,根据胡克定律可知,其刚度系数远远高于无牌坊轧机丝杆的刚度系数, 从而大大提高了机架的刚度,为电池极片精确轧制提供了保障条件。此外,短变 应力线轧机还具有一般轧机不具备的消振和自安全保护作用。 AGC 电池极片轧机即采用液压压下的自动厚度控制系统的液压 AGC 电池极片 轧机(Automatic Gange Control),AGC 系统由测厚、厚度比较及辊缝调整组成。 根据电池极片的测厚方法,AGC 可分为直接测厚法的 AGC,间接测厚的 P-AGC, 及预控 AGC。预控 AGC 是开环系统,不能检查控制效果,其控制精度只能取决于 计算精度,为了提高控制精度,预控 AGC 往往与 P-AGC 联合使用。液压 AGC 不仅 惯性小,响应速度快,控制精度高,而且还可以进行机床当量刚度的控制,以便 适应电池极片不同的轧制工艺要求。 当前,国内市场内普通型轧机不少,严格意义上的无牌坊轧机及短变应力很 少见,而 AGC 电池极片轧机国内还处于研发试制阶段。不过,就国内外整个电池 极片辊压机的发展趋势来看,大家都向高辊压精度、高生产率、操作上的高自动 化发展,电池极片的自由程序轧制可能在 3-5 年内实现。 六、电池极片轧机滚压精度的判断与评定 在电池极片轧制行业,人们一提起电池极片轧机的轧制精度,电池极片轧机 的制造商往往说他们辊压机的装机辊跳是多少多少, 这只能说明轧辊的制作精度 和轧机的装配精度是怎么个样子,并不代表该轧机的滚压精度。所谓电池极片轧 机的滚压精度是指该设备轧制电池极片时的滚压精度, 该滚压精度受电池极片轧 机诸多因素的影响,我们从以上的论述中可以看到,在这里就不在重复。因此, 衡量电池极片轧机滚压精度的最好方法也是唯一的办法, 就是用电池极片实际去

轧制,经过测量,才能知道轧机滚压精度的真实情况。 以上论述中,未免有错误与不恰当之处,恳请大家批评斧正!

2012 年 3 月 17 日


网站首页 | 网站地图 | 学霸百科
All rights reserved Powered by 学霸学习网 www.tceic.com
copyright ©right 2010-2021。
文档资料库内容来自网络,如有侵犯请联系客服。zhit325@126.com