tceic.com
学霸学习网 这下你爽了
相关文章
当前位置:首页 >> 高中教育 >>

2015届高考数学(人教,理科)大一轮配套练透:第2章 函数、导数及其应用 第10节]


[课堂练通考点] 1.(2013· 全国大纲卷)已知曲线 y=x4+ax2+1 在点(-1,a+2)处切线的斜率为 8,则 a =( ) A.9 C.-9 B.6 D.-6

解析: 选 D y′=4x3+2ax, 由导数的几何意义知在点(-1, a+2)处的切线斜率 k=y′|x
=-1

=-4-2a=8,解得 a=-6. 2.(2014· 济宁模拟)已知 f(x)=x(2 012+ln x),f′(x0)=2 013,则 x0=( A.e2 C.ln 2 B.1 D.e )

1 解析:选 B 由题意可知 f′(x)=2 012+ln x+x· =2 013+ln x.由 f′(x0)=2 013, x 得 ln x0=0,解得 x0=1. 3.若曲线 y=x2+aln x(a>0)上任意一点处的切线斜率为 k,若 k 的最小值为 4,则此时 该切点的坐标为( A.(1,1) C.(3,1) ) B.(2,3) D.(1,4)

a 解析: 选 A y=x2+aln x 的定义域为(0, +∞), 由导数的几何意义知 y′=2x+ ≥2 2a x =4, 则 a=2, 当且仅当 x=1 时等号成立, 代入曲线方程得 y=1, 故所求的切点坐标是(1,1). 4.已知 f(x)=x2+2xf′(1),则 f′(0)=________. 解析:∵f′(x)=2x+2f′(1), ∴f′(1)=2+2f′(1),即 f′(1)=-2. ∴f′(x)=2x-4.∴f′(0)=-4. 答案:-4 5. (2014· 黄冈一模)已知函数 f(x)=x(x-1)(x-2)(x-3)· (x-4)(x-5), 则 f′(0)=________. 解析:f′(x)=(x-1)(x-2)(x-3)(x-4)(x-5)+x[(x-1)(x-2)(x-3)(x-4)(x-5)]′, ∴f′(0)=(-1)×(-2)×(-3)×(-4)×(-5)=-120. 答案:-120 1 6.已知点 M 是曲线 y= x3-2x2+3x+1 上任意一点,曲线在 M 处的切线为 l,求: 3 (1)斜率最小的切线方程;

(2)切线 l 的倾斜角 α 的取值范围. 解:∵(1)y′=x2-4x+3=(x-2)2-1≥-1, 5 ∴当 x=2 时,y′=-1,y= , 3 5? ∴斜率最小的切线过点? ?2,3?, 斜率 k=-1, 11 ∴切线方程为 x+y- =0. 3 (2)由(1)得 k≥-1, ∴tan α≥-1, π 3π 0, ?∪? ,π?. ∴α∈? 2 ? ? ?4 ? [课下提升考能] 第Ⅰ组:全员必做题 1.函数 f(x)=(x+2a)(x-a)2 的导数为( A.2(x2-a2) C.3(x2-a2) 解析:选 C ) B.2(x2+a2) D.3(x2+a2) f′(x)=(x-a)2+(x+2a)[2(x-a)]=3(x2-a2).

3 2.已知物体的运动方程为 s=t2+ (t 是时间,s 是位移),则物体在时刻 t=2 时的速度 t 为( ) 19 A. 4 15 C. 4 17 B. 4 13 D. 4

3 3 13 解析:选 D ∵s′=2t- 2,∴s′|t=2=4- = . t 4 4 1 3. (2014· 济南模拟)已知曲线 y1=2- 与 y2=x3-x2+2x 在 x=x0 处切线的斜率的乘积为 x 3,则 x0 的值为( A.-2 1 C. 2 ) B.2 D.1

1 解析:选 D 由题知 y′1= 2,y′2=3x2-2x+2,所以两曲线在 x=x0 处切线的斜率分 x
2 3x 0 -2x0+2 1 2 别为 2 ,3x0-2x0+2,所以 ,所以 x0=1. 2 x0 x0

4.已知 f(x)与 g(x)是定义在 R 上的两个可导函数,若 f(x),g(x)满足 f′(x)=g′(x),则

f(x)与 g(x)满足( A.f(x)=g(x)

) B.f(x)=g(x)=0 D.f(x)+g(x)为常数函数

C.f(x)-g(x)为常数函数

解析:选 C 由 f′(x)=g′(x),得 f′(x)-g′(x)=0, 即[f(x)-g(x)]′=0,所以 f(x)-g(x)=C(C 为常数). 2 5.已知函数 f(x)= x3-2ax2-3x(a∈R),若函数 f(x)的图像上点 P(1,m)处的切线方程 3 为 3x-y+b=0,则 m 的值为( 1 A.- 3 1 C. 3 2 解析:选 A ∵f(x)= x3-2ax2-3x, 3 ∴f′(x)=2x2-4ax-3, ∴过点 P(1,m)的切线斜率 k=f′(1)=-1-4a. 又点 P(1,m)处的切线方程为 3x-y+b=0, ∴-1-4a=3,∴a=-1, 2 ∴f(x)= x3+2x2-3x.又点 P 在函数 f(x)的图像上, 3 1 ∴m=f(1)=- . 3 6. (2013· 广东高考)若曲线 y=kx+ln x 在点(1, k)处的切线平行于 x 轴, 则 k=________. 1 解析:y′|x=1=0,即当 x=1 时,k+ =k+1=0,解得 k=-1. x 答案:-1 7.已知函数 f(x)=ln x-f′(-1)x2+3x-4,则 f′(1)=________. 1 解析:∵f′(x)= -2f′(-1)x+3, x f′(-1)=-1+2f′(-1)+3, ∴f′(-1)=-2,∴f′(1)=1+4+3=8. 答案:8 8.已知 f1(x)=sin x+cos x,记 f2(x)=f1′(x),f3(x)=f2′(x),…,fn(x)=fn-1′(x)(n∈N*, π? ?π? ?π? n≥2),则 f1? + f 2 2 +…+f2 014 2 =________. 2 ? ? ? ? ? ? 解析:f2(x)=f1′(x)=cos x-sin x, f3(x)=(cos x-sin x)′=-sin x-cos x, f4(x)=-cos x+sin x,f5(x)=sin x+cos x, ) 1 B.- 2 1 D. 2

以此类推,可得出 fn(x)=fn+4(x), 又∵f1(x)+f2(x)+f3(x)+f4(x)=0, π? ?π? ?π? ?π? ?π? ?π? ?π? ?π? ?π? ∴f1? ?2?+f2?2?+…+f2 014?2?=503f1?2?+f2?2?+f3?2?+f4?2?+f1?2?+f2?2?=0. 答案:0 9.求下列函数的导数. (1)y=x· tan x; (2)y=(x+1)(x+2)(x+3); (3)y=3sin 4x. 解:(1)y′=(x· tan x)′=x′tan x+x(tan x)′ cos2x+sin2x ? sin x ?′=tan x+x· =tan x+x· ?cos x? cos2x =tan x+ x . cos2x

(2)y′=(x+1)′[(x+2)(x+3)]+(x+1)·[(x+2)(x+3)]′=(x+2)(x+3)+(x+1)·(x+ 2)+(x+1)(x+3)=3x2+12x+11. (3)y′=(3sin 4x)′=3cos 4x· (4x)′=12cos 4x. 2 10.已知函数 f(x)=x- ,g(x)=a(2-ln x)(a>0).若曲线 y=f(x)与曲线 y=g(x)在 x=1 x 处的切线斜率相同,求 a 的值,并判断两条切线是否为同一条直线. 解:根据题意有 曲线 y=f(x)在 x=1 处的切线斜率为 f′(1)=3, 曲线 y=g(x)在 x=1 处的切线斜率为 g′(1)=-a. 所以 f′(1)=g′(1),即 a=-3. 曲线 y=f(x)在 x=1 处的切线方程为 y-f(1)=3(x-1),又 f(1)=-1, 得:y+1=3(x-1),即切线方程为 3x-y-4=0. 曲线 y=g(x)在 x=1 处的切线方程为 y-g(1)=3(x-1).又 g(1)=-6. 得 y+6=3(x-1),即切线方程为 3x-y-9=0, 所以,两条切线不是同一条直线. 第Ⅱ组:重点选做题 1. (2014· 东营一模)设曲线 y=sin x 上任一点(x, y)处切线的斜率为 g(x), 则函数 y=x2g(x) 的部分图像可以为( )

解析:选 C 根据题意得 g(x)=cos x,∴y=x2g(x)=x2cos x 为偶函数. 又 x=0 时,y=0,故选 C. ?x+1?2+sin x 2. (2013· 山西模拟)已知函数 f(x)= , 其导函数记为 f′(x), 则 f(2 012)+f′(2 x2+1 012)+f(-2 012)-f′(-2 012)=________. 2x+sin x 解析:由已知得 f(x)=1+ 2 , x +1 ?2+cos x??x2+1?-?2x+sin x?· 2x 则 f′(x)= 2 2 ?x +1? 2x+sin x 令 g(x)=f(x)-1= 2 , 显然 g(x)为奇函数, f′(x)为偶函数, 所以 f′(2 012)-f′(- x +1 2 012)=0,f(2 012)+f(-2 012)=g(2 012)+1+g(-2 012)+1=2, 所以 f(2 012)+f′(2 012)+f(-2 012)-f′(-2 012)=2. 答案:2


推荐相关:

2015届高考数学(人教,理科)大一轮配套练透:第2章 函数....doc

2015届高考数学(人教,理科)大一轮配套练透:第2章 函数导数及其应用 第10节_数学_高中教育_教育专区。2015届高考数学(人教,理科)大一轮配套练透 ...

2015届高考数学(人教,理科)大一轮配套练透:第2章 函数....doc

2015届高考数学(人教,理科)大一轮配套练透:第2章 函数导数及其应用 第10节] - [课堂练通考点] 1.(2013 全国大纲卷)已知曲线 y=x4+ax2+1 在点(-1...

2015届高考数学(人教,理科)大一轮配套练透:第2章 函数....doc

2015届高考数学(人教,理科)大一轮配套练透:第2章 函数导数及其应用 第10节] - [课堂练通考点] 1.(2013 全国大纲卷)已知曲线 y=x4+ax2+1 在点(-1...

2015届高考数学(人教,理科)大一轮配套练透:第2章 函数....doc

2015届高考数学(人教,理科)大一轮配套练透:第2章 函数导数及其应用 第3

2015届高考数学(人教,理科)大一轮配套练透:第2章 函数....doc

2015届高考数学(人教,理科)大一轮配套练透:第2章 函数导数及其应用 第7

2015届高考数学(人教,理科)大一轮配套练透:第2章 函数....doc

2015届高考数学(人教,理科)大一轮配套练透:第2章 函数导数及其应用 第1

2015届高考数学(人教,理科)大一轮配套练透:第2章 函数....doc

2015届高考数学(人教,理科)大一轮配套练透:第2章 函数导数及其应用 第1节] - [课堂练通考点] 1.下列函数中,与函数 y= 1 A.y= sin x C.y=xex ...

2015届高考数学(人教,理科)大一轮配套练透:第2章 函数....doc

2015届高考数学(人教,理科)大一轮配套练透:第2章 函数、导数及其应用 第3节] - [课堂练通考点] 5? 1.设 f(x)是周期为 2 的奇函数,当 0≤x≤1 时,...

2015届高考数学(人教,理科)大一轮配套练透:第2章 函数....doc

2015届高考数学(人教,理科)大一轮配套练透:第2章 函数导数及其应用 第8节] - [课堂练通考点] ?2x-1,x≤1, ? 1.已知函数 f(x)=? 则函数 f(x)的...

2015届高考数学(人教,理科)大一轮配套练透:第9章 计数....doc

2015届高考数学(人教,理科)大一轮配套练透:第9章 计数原理与概率、随机变量及其分布 第2节_高考_高中教育_教育专区。2015届高考数学(人教,理科)大一轮配套练透 ...

2015届高考数学(人教,理科)大一轮配套练透:第8章 平面....doc

2015届高考数学(人教,理科)大一轮配套练透:第8章 平面解析几何 第2节] - [课堂练通考点] 1. (2013 银川模拟)已知直线 l1:x+ay+6=0 和 l2:(a-2)...

2015届高考数学(人教,理科)大一轮配套练透:第3章 三角....doc

2015届高考数学(人教,理科)大一轮配套练透:第3章 三角函数、解三角形 第1

2015届高考数学(人教,理科)大一轮配套练透:第2章 函数....doc

2015届高考数学(人教,理科)大一轮配套练透:第2章 函数导数及其应用 第9节] - [课堂练通考点] 1.(2014 南昌质检)往外埠投寄平信,每封信不超过 20 g...

2015届高考数学(人教,理科)大一轮配套练透:第10章 算法....doc

2015届高考数学(人教,理科)大一轮配套练透:第10章 算法初步、统计、统计案例 第2节_数学_高中教育_教育专区。2015届高考数学(人教,理科)大一轮配套练透 ...

2015届高考数学(人教,理科)大一轮配套练透:选修4-4 第2节].doc

2015届高考数学(人教,理科)大一轮配套练透:选修4-4 第2节] - [课堂

2015届高考数学(人教,理科)大一轮配套练透:第8章 平面....doc

2015届高考数学(人教,理科)大一轮配套练透:第8章 平面解析几何 第2节_数

2015届高考数学(人教,理科)大一轮配套练透:第3章 三角....doc

2015届高考数学(人教,理科)大一轮配套练透:第3章 三角函数、解三角形 第8

2015届高考数学(人教,理科)大一轮配套练透:第9章 计数....doc

2015届高考数学(人教,理科)大一轮配套练透:第9章 计数原理与概率、随机变量及其分布 第7节_高考_高中教育_教育专区。2015届高考数学(人教,理科)大一轮配套练透 ...

2015届高考数学(人教,理科)大一轮配套练透:第5章 数列 ....doc

2015届高考数学(人教,理科)大一轮配套练透:第5章 数列 第4节_数学_高中

2015届高考数学(人教,理科)大一轮配套练透:第5章 数列 ....doc

2015届高考数学(人教,理科)大一轮配套练透:第5章 数列 第5节_数学_高中

网站首页 | 网站地图
All rights reserved Powered by 学霸学习网 www.tceic.com
copyright ©right 2010-2021。
文档资料库内容来自网络,如有侵犯请联系客服。zhit325@126.com