tceic.com
学霸学习网 这下你爽了
当前位置:首页 >> 数学 >>

最新高中数学会考知识点总结1优秀名师资料

高中数学会考知识点总结(1) 龙驰教育 高中数学会考知识点总结 一、集合与常用逻辑用语及算法初步 集合中的元素具有确定性、互异性和无序性。 *QN 常用数集,自然数集、正整数集或、整数集 Z、有理数集、实数集 R。 NN, 子集、真子集、补集 交集、并集 (,)(,)(,)逻辑联结词,或、且、非。 复合命题三种形式,或,且,非。 pppqq 判断复合命题的真假, 或,同假为假,否则为真,且,同真为真,非,与真假相反。 ppppqq 四种命题, 原命题,若则,逆命题,若则,否命题,若则,逆否命题,若则。 pp,p,q,q,pqq 原命题与逆否命题互为逆否命题,逆命题与否命题互为逆否命题。 互为逆否的 两个命题是等价的。 反证法步骤,假设结论不成立推出矛盾否定假设。 ,, 充分条件与必要条件, 若 p,q,则 p 叫做的充分条件, q q,p 若,则 p 叫做的必要条件, q 若 p,q,则叫做的充要条件。 pq 三种基本逻辑结构,顺序结构、条件结构、循环结构。 二、基本初等函数 映射、函数 函数的定义域、值域、区间,闭区间、开区间、半开半闭区间, 求函数的定义 域, 分式的分母不等于 0,偶次根式的被开方数大于等于 0,对数的真数大于 0,底数 大于 0 且不等于 1, ,(k,Z)f(x)y,tanx 零次幂的底数不等于 0,三角函数中的正切函数,,已知函数 x,k,,2 f[g(x)]g(x),Df[g(x)]DD 定义域为,求函数的定义域,只需,已知函数的定义域 为,求函 1 龙驰教育 f(x)g(x)p5 数定义域,只需要求的值域,D。,5 年高考 3 年模拟,例 2, 函数的单 调性、单调区间、函数的最大值与最小值 函数的奇偶性 偶函数的图像关于轴对称,奇函数的图像关于原点对称。 y 指数、分数指数幂 rsr,srsrsrrra,0,b,0,r,s,Qa,a,a 有理指数幂的运算性质,,,,,。 (a),a(ab),ab x(a,0,a,1)a,N 对数,如果,数就叫做以为底的对数,记为,其中叫 NlogN,xxaaa logNaa,N 做底数,叫做真数,,。 N 积、商、幂、方根的对数,M,是正数,, N Mn,,。 logM,nlogMlog(MN),logM,logNlog,logM,logNaaaaaaaaN lgN 常用对数,以 10 为底的对数叫做常用对数,通常写成。 logN10 自然对数,以为底的对数叫做常用对数,通常写成。 lnNlogNee p20 指数函数、对数函数的定义、图像和性质,, p21 幂函数的定义、图像和性质,, f(x),0y,f(x)f(x),0 函数的零点,使的实数叫做函数的零点,方程有实根函数,x y,f(x)y,f(x)的图像与轴有交点函数有零点。 ,x 函数有零点的判定, y,f(x)[a,b]f(a),f(b),0 如果函数在区间上的图像是连续不断的一条曲线,并 且,那么函 y,f(x)(a,b)c,(a,b)f(c),0 数在区间内有零点,即存在,使得。这个也就是方 程 cf(x),0 的根。 三、三角函数与三角恒等变换 正角、负角和零角,与角终边相同的角的表示,象限的角 , 180,,,,,弧度制,,。 1,()rad1rad,(),57.30,5718',180 l,|,|r 圆弧长公式,,为圆弧所对的圆心角的弧度数,。 , yyx,,,任意角的三角函数,,,。 costansin,,,rrx 三角函数的定义域、值域 三角函数值在每个象限的符号, (,,,,,,,)(,,,,,,,)(,,,,,,,)sin,,,tan,。 cos, 2 龙驰教育 ,sin22sin,,cos,,1 同角三角函数的基本关系式,,。 ,tan,cos,三角函数的诱 导公式,记忆规律,奇变偶不变,符号看象限, p32~33 三角函数的图像和性质,, y,Asin(,x,,)y,Acos(,x,,)最小正周期,、 y,Asin(,x,,)函数的图像,振幅变换、周期变换、平移变换 两角和与差的正 弦、余弦、正切, sin(,,,),sin,cos,,cos,sin,, cos(,,,),cos,cos,,sin,sin,, ,,tan,tan,,tan(,),。 1,tan,tan, 二倍角的正弦、余弦、正切, , sin2,,2sin,cos, 2222cos,2,cos,,sin,,2cos,,1,1,2sin,, ,2tan,tan2,。 21,tan, ,化特殊式子,asinx,bcosx 为一个角的三角函数形式,例如,。 cosx, 3sinx,2sin(x,)6 斜三角形的解法, abc,,正弦定理,。 sinAsinBsinC 余弦定理, 222222222a,b,c,2bc,cosAb,a,c,2ac,cosBc,a,b,2ab,cosC,,。 111 三角形的面积公式,。 S,absinC,bcsinA,acsinB,ABC222 四、不等式 p43 不等式的基本性质,, 比较两个数或式的大小,一般步骤是, 作差——变形——与 0 比较大小,或者作商——变形——与 1 比较大小。 p43 解一元二次不等式的一般步骤,, p44 二元一次不等式,组,与平面区域,, 基本不等式, 3 龙驰教育 22a,b,2ab 若,则, a,b,R a,b 若,为正数,则,当且仅当时取等号。 ab,a,bba2 利用算术平均数与几何平均数定理求函数的最大值和最小值 五、数列 S,(n1),1 与的关系, ,aSa,nnn,SS(n,1)nn,1, 等差数列的通项公式,。 a,a,(n,1)dn1 AA 等差中项,,,组成等差数列, 叫做与的等差中项,。 a,b,2Abbaa ()naa,(1)nn,1n 等差数列的前项和公式,。 Snad,,,n1n22 等差数列的常用 性质,,若 m,n,p,q,则。 a,a,a,aa,a,(n,m)dmnpqn

网站首页 | 网站地图 | 学霸百科 | 新词新语
All rights reserved Powered by 学霸学习网 www.tceic.com
copyright ©right 2010-2021。
文档资料库内容来自网络,如有侵犯请联系客服。zhit325@126.com