第 28 届全国中学生物理竞赛复赛试题(2011) 一、(20 分)如图所示,哈雷彗星绕太阳 S 沿椭圆轨道逆时针方向运动,其周期 T 为 76.1 年,1986 年它过近日点 P0 时与太阳 S 的距离 r0=0.590AU,AU 是天文单位,它等于地 球与太阳的平均距离,经过一段时间,彗 星到达轨道上的 P 点,SP 与 SP0 的夹角 θ P=72.0°。已知:1AU=1.50 × 1011m, - 引力常量 G=6.67×10 11Nm2/kg2,太阳质 量 mS=1.99×1030kg,试求 P 到太阳 S 的 距离 rP 及彗星过 P 点时速度的大小及方 向(用速度方向与 SP0 的夹角表示) 。 二、 (20 分)质量均匀分布的刚性杆 AB、CD 如图放置,A 点与水平地面接触,与地面间的 静摩擦系数为μ A,B、D 两点与光滑竖直墙面接触, 杆 AB 和 CD 接触处的静摩擦系数为μ C,两杆的质量 均为 m,长度均为 l。 1、已知系统平衡时 AB 杆与墙面夹角为θ ,求 CD 杆 与墙面夹角α 应该满足的条件(用α 及已知量满足的 方程式表示) 。 2、若μ A=1.00,μ C=0.866,θ =60.0°。求系统平衡 时α 的取值范围(用数值计算求出) 。 三、 (25 分)在人造卫星绕星球运行的过程中,为了保持其对称转轴稳定在规定指向,一种 最简单的办法就是让卫星在其运行过程中同时绕自身的对称轴转, 但有时为了改变卫星的指 向,又要求减慢或者消除卫星的旋转,减慢或者消除卫星旋转的一种方法就是所谓消旋法, 其原理如图所示。 一半径为 R,质量为 M 的薄壁圆筒, ,其横截面如图所示,图中 O 是圆筒的对称轴, 两条足够长的不可伸长的结实的长度相等的轻绳的一 端分别固定在圆筒表面上的 Q、Q′(位于圆筒直径 两端)处,另一端各拴有一个质量为 m 的小球,正常 2 情况下,绳绕在圆筒外表面上,两小球用插销分别锁 定在圆筒表面上的 P0、P0′处,与卫星形成一体,绕 卫星的对称轴旋转,卫星自转的角速度为ω 0。若要使 卫星减慢或者停止旋转(消旋) ,可瞬间撤去插销释放 小球,让小球从圆筒表面甩开,在甩开的整个过程中, 从绳与圆筒表面相切点到小球的那段绳都是拉直的。 当卫星转速逐渐减小到零时,立即使绳与卫星脱离,解除小球与卫星的联系,于是卫星转动 停止。已知此时绳与圆筒的相切点刚好在 Q、Q′处。 1、 求当卫星角速度减至ω 时绳拉直部分的长度 l; 2、 求绳的总长度 L; 3、 求卫星从ω 0 到停转所经历的时间 t。 1 四、 (20 分)空间某区域存在匀强电场和匀强磁场,在此区域建立直角坐标系 O-xyz,如图 所示,匀强电场沿 x 方向,电场强度 E 1 ? E 0 i ,匀强磁场沿 z 方向,磁感应强度 B ? B0 k , E0、B0 分别为已知常量, i、 k 分别为 x 方向和 z 方向的单位矢量。 1、有一束带电量都为+q、质量都为 m 的粒子,同时从 Oyz 平面内的某点射出, 它们的初速度均在 Oyz 平面内, 速度的大小和方向各不相同,问经过多少时间这些粒子 又能同时回到 Oyz 平面内。 2、 现在该区域内再增加一个沿 x 方向随时间变化的匀强 电场,电场强度 E z ? ( E0 cos ?t )k ,式中 ? ? qB0 , m 若有一电荷量为正 q、质量为 m 的粒子,在 t=0 时刻从 坐标原点 O 射出,初速度 v0 在 Oyz 平面内,试求以后 此粒子的坐标随时间变化的规律。