tceic.com
简单学习网 让学习变简单
当前位置:首页 >> 数学 >>

高中数学必修4教案 2


高中数学必修 4 教案

1.1.1 任意角
教学目标 (一) 知识与技能目标 理解任意角的概念(包括正角、负角、零角) 与区间角的概念. (二) 过程与能力目标 会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角 的集合的书写. (三) 情感与态度目标 1. 提高学生的推理能力; 2.培养学生应用意识. 教学重点 任意角概

念的理解;区间角的集合的书写. 教学难点 终边相同角的集合的表示;区间角的集合的书写. 教学过程 一、引入: 1.回顾角的定义 ①角的第一种定义是有公共端点的两条射线组成的图形叫做角. ②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所 形成的图形. 二、新课: 1.角的有关概念: ①角的定义: 角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. ②角的名称: 始边 B 终边 ③角的分类: O A 顶点 正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角 负角:按顺时针方向旋转形成的角 ④注意: ⑴在不引起混淆的情况下, “角α ”或“∠α ”可以简化成“α ” ; ⑵零角的终边与始边重合,如果α 是零角α =0°; ⑶角的概念经过推广后,已包括正角、负角和零角. ⑤练习:请说出角α 、β 、γ 各是多少度? 2.象限角的概念: ①定义:若将角顶点与原点重合,角的始边与 x 轴的非负半轴重合,那么角的终边(端点除 外)在第几象限,我们就说这个角是第几象限角. 例 1.如图⑴⑵中的角分别属于第几象限角? y y B1 45° O ⑴ x 60o B3 O ⑵ 480°; 30° x B2

例 2.在直角坐标系中,作出下列各角,并指出它们是第几象限的角. ⑴ 60°; ⑵ 120°; ⑶ 240°; ⑷ 300°; ⑸ 420°; ⑹

1

高中数学必修 4 教案
答:分别为 1、2、3、4、1、2 象限角. 3.探究:教材 P3 面 终边相同的角的表示: 所有与角α 终边相同的角,连同α 在内,可构成一个集合 S={ β | β = α + k·360 ° , k∈Z},即任一与角α 终边相同的角,都可以表示成角α 与整个周角的和. 注意: ⑴ k∈Z ⑵ α 是任一角; ⑶ 终边相同的角不一定相等,但相等的角终边一定相同.终边相同的角有无限个,它们 相差 360°的整数倍; ⑷ 角α + k·720 °与角α 终边相同,但不能表示与角α 终边相同的所有角. 例 3.在 0°到 360°范围内,找出与下列各角终边相等的角,并判断它们是第几象限角. ⑴-120°;⑵640 °;⑶-950°12' . 答:⑴240°,第三象限角;⑵280°,第四象限角;⑶129°48',第二象限角; 例 4.写出终边在 y 轴上的角的集合(用 0°到 360°的角表示) . 解:{α | α = 90°+ n·180°,n∈Z}. 例 5. 写出终边在 y ? x 上的角的集合 S,并把 S 中适合不等式-360°≤β <720°的元素β 写出来. 4.课堂小结 ①角的定义; ②角的分类: 正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角 负角:按顺时针方向旋转形成的角 ③象限角; ④终边相同的角的表示法. 5.课后作业: ①阅读教材 P2-P5; ②教材 P5 练习第 1-5 题; 思考题:已知α 角是第三象限角,则 2α ,

③教材 P.9 习题 1.1 第 1、2、3 题

解:?? 角属于第三象限, ? k·360°+180°<α <k·360°+270°(k∈Z) 因此,2k·360°+360°<2α <2k·360°+540°(k∈Z) 即(2k +1)360°<2α <(2k +1)360°+180°(k∈Z) 故 2α 是第一、二象限或终边在 y 轴的非负半轴上的角. 又 k·180°+90°<

? 各是第几象限角? 2

? <k·180°+135°(k∈Z) . 2

当 k 为偶数时,令 k=2n(n∈Z),则 n·360°+90°< 此时,

? 属于第二象限角 2

? <n·360°+135°(n∈Z) , 2
? <n·360°+315°(n∈Z) , 2

当 k 为奇数时,令 k=2n+1 (n∈Z),则 n·360°+270°< 此时,

? 属于第四象限角 2

2

高中数学必修 4 教案
因此

? 属于第二或第四象限角. 2

1.1.2 弧度制(一)
教学目标 (四) 知识与技能目标 理解弧度的意义;了解角的集合与实数集 R 之间的可建立起一一对应的关系;熟记特 殊角的弧度数. (五) 过程与能力目标 能正确地进行弧度与角度之间的换算, 能推导弧度制下的弧长公式及扇形的面积公式, 并能运用公式解决一些实际问题 (六) 情感与态度目标 通过新的度量角的单位制(弧度制)的引进,培养学生求异创新的精神;通过对弧度制 与角度制下弧长公式、扇形面积公式的对比,让学生感受弧长及扇形面积公式在弧度制下 的简洁美. 教学重点 弧度的概念.弧长公式及扇形的面积公式的推导与证明. 教学难点 “角度制”与“弧度制”的区别与联系. 教学过程 一、复习角度制: 初中所学的角度制是怎样规定角的度量的? 规定把周角的

1 作为 1 度的角,用度做单位来度量角的制度叫做角度制. 360

二、新课: 1.引 入: 由角度制的定义我们知道,角度是用来度量角的, 角度制的度量是 60 进制的,运用起来 不太方便.在数学和其他许多科学研究中还要经常用到另一种度量角的制度—弧度制,它是 如何定义呢? 2.定 义 我们规定,长度等于半径的弧所对的圆心角叫做 1 弧度的角;用弧度来度量角的单位制 叫做弧度制.在弧度制下, 1 弧度记做 1rad.在实际运算中,常常将 rad 单位省略. 3.思考: (1)一定大小的圆心角 ? 所对应的弧长与半径的比值是否是确定的?与圆的半径大小有关 吗? (2)引导学生完成 P6 的探究并归纳: 弧度制的性质: ①半圆所对的圆心角为

?r
r

? ?;

②整圆所对的圆心角为

2?r ? 2? . r l r

③正角的弧度数是一个正数. ⑤零角的弧度数是零. 4.角度与弧度之间的转换: ①将角度化为弧度:

④负角的弧度数是一个负数. ⑥角α 的弧度数的绝对值|α |= .

360 ? ? 2? ; 180 ? ? ? ; 1? ?
②将弧度化为角度:

?
180

? 0.01745 rad ; n? ?

n? rad . 180

3

高中数学必修 4 教案

180 2p = 360 ; p = 180 ; 1rad = ( )盎 57.30? p

57 18?; n = (

180n ) . p

5.常规写法: ① 用弧度数表示角时,常常把弧度数写成多少π 的形式, 不必写成小数. ② 弧度与角度不能混用. 6.特殊角的弧度 角 0 30 45 60 90 120 135 150 180 270 360 度 ° ° ° ° ° ° ° ° ° ° ° 弧 度 0

? 6
l ? l r

? 4
r a

? 3

? 2

2? 3

3? 4

5? 6

?

3? 2

2?

7.弧长公式

a =

弧长等于弧所对应的圆心角(的弧度数)的绝对值与半径的积. 例 1.把 67°30'化成弧度. 例 2.把 ? rad 化成度. 例 3.计算:

3 5

(1) sin

?
4

; (2) tan1.5 .

例 4.将下列各角化成 0 到 2π 的角加上 2kπ (k∈Z)的形式:

(1)

19? ; (2) ? 315? . 3

例 5.将下列各角化成 2kπ + α (k∈Z,0≤α <2π )的形式,并确定其所在的象限.

31? 19? ; ( 2) ? . 3 6 l R 19? 7? ? 2? ? , 解: (1) 3 6 O 7? 19p 而 是第三象限的角, \ 是第三象限角. 6 3 31p 5p 31p = - 6p + ,\ (2) ? 是第二象限角. 6 6 6 1 例 6. 利用弧度制证明扇形面 积公式 S ? lR, 其中 l是扇形弧长 , R是圆的半径 . 2 1 2 ?R 2 ,又扇形弧长为 l,半径为 证法一:∵圆的面积为 ?R ,∴圆心角为 1rad 的扇形面积为 2? (1)
R, ∴扇形的圆心角大小为

l l 1 2 1 rad, ∴扇形面积 S ? ? R ? lR . R R 2 2

证法二:设圆心角的度数为 n,则在角度制下的扇形面积公式为 S ?

l?

n?R 1 n?R 1 ?R ? l ?R. ,∴ S ? ? 180 2 180 2

n ? ?R 2 ,又此时弧长 360

可看出弧度制与角度制下的扇形面积公式可以互化, 而弧度制下的扇形面积公式显然要 简洁得多.

4

高中数学必修 4 教案

1 1 扇形面积公式 : S ? lR ? ? R 2 2 2
7.课堂小结①什么叫 1 弧度角? ②任意角的弧度的定义③“角度制”与“弧度制”的联系 与区别. 8.课后作业: ①阅读教材 P6 –P8; ②教材 P9 练习第 1、2、3、6 题; ③教材 P10 面 7、8 题及 B2、3 题.

4-1.2.1 任意角的三角函数(三)
教学目的: 知识目标:1.复习三角函数的定义、定义域与值域、符号、及诱导公式; 2.利用三角函数线表示正弦、余弦、正切的三角函数值; 3.利用三角函数线比较两个同名三角函数值的大小及表示角的范围。 能力目标:掌握用单位圆中的线段表示三角函数值,从而使学生对三角函数的定义域、 值域有更深的理解。 德育目标:学习转化的思想,培养学生严谨治学、一丝不苟的科学精神; 教学重点:正弦、余弦、正切线的概念。 教学难点:正弦、余弦、正切线的利用。 教学过程: 一、复习引入: 1. 三角函数的定义 2. 诱导公式

sin(2k? ? ? ) ? sin ? (k ? Z) cos(2k? ? ? ) ? cos? (k ? Z) tan(2k? ? ? ) ? tan? (k ? Z)
练习 1.
o tan600的值是__________ . D __

A. ?

3 3

B.

3 3

C. ? 3

D. 3

练习 2.

若 sin θ cosθ ? 0, 则θ在 ________ B . A. 第 一 、 二 象 限 B. 第 一 、 三 象 限

练习 3.

C. 第 一 、 四 象 限 D. 第 二 、 四 象 限 若 cosθ ? 0,且sin2? ? 0则θ的终边在 ____
A. 第一象限 B. 第三象限 C. 第四象限
x2 ? y2 ? 1

C

D. 第二象限

二、讲解新课: 当角的终边上一点 P ( x, y ) 的坐标满足 时,有三角函数正弦、余弦、正切值的 几何表示——三角函数线。 1.有向线段: 坐标轴是规定了方向的直线,那么与之平行的线段亦可规定方向。 规定:与坐标轴方向一致时为正,与坐标方向相反时为负。

5

高中数学必修 4 教案
有向线段:带有方向的线段。 2.三角函数线的定义: 设任意角 ? 的顶点在原点 O ,始边与 x 轴非负半轴重合,终边与单位圆相交与点 P ( x, y ) ,

过 P 作 x 轴的垂线,垂足为 M ;过点 A(1, 0) 作单位圆的切线,它与角 ? 的终边或其反向 y y 延 T 长线交与点 T .

P

P

M

o

A

x

o

A
M

x

T
y (Ⅱ) T
M

y (Ⅰ)
M A

o

A

x

o

x

P
(Ⅲ)

P T
(Ⅳ)

由四个图看出: 当角 ? 的终边不在坐标轴上时,有向线段 OM ? x, MP ? y ,于是有

sin ? ?

y y x x y MP AT ? ? y ? MP , cos ? ? ? ? x ? OM , tan ? ? ? ? ? AT r 1 r 1 x OM OA

我们就分别称有向线段 MP, OM , AT 为正弦线、余弦线、正切线。 说明: (1)三条有向线段的位置:正弦线为 ? 的终边与单位圆的交点到 x 轴的垂直线段;余弦线 在 x 轴上;正切线在过单位圆与 x 轴正方向的交点的切线上, 三条有向线段中两条在单位圆内,一条在单位圆外。 (2)三条有向线段的方向:正弦线由垂足指向 ? 的终边与单位圆的交点;余弦线由原点指 向垂 足;正切线由切点指向与 ? 的终边的交点。 (3)三条有向线段的正负:三条有向线段凡与 x 轴或 y 轴同向的为正值,与 x 轴或 y 轴反 向的 为负值。 (4)三条有向线段的书写:有向线段的起点字母在前,终点字母在后面。 4.例题分析: 例 1.作出下列各角的正弦线、余弦线、正切线。 (1)

? 5? 2? ; (2) ; (3) ? ; 3 6 3

(4) ?

13? . 6

解:图略。 例 2. 若0 ? ? ?

?
2

,证明 sin ? ? cos ? ? 1.

6

高中数学必修 4 教案

例3.比较大小: 2 4 (1) sin ?与 sin ? 3 5 2 4 (3) t an ?与 t an ? 3 5

2 4 (2) cos ?与 cos ? 3 5

1 例4.在[0,2? ]上满足 sin x ? 的x的取值范围是 ( ) 2 ? ?? ?? 5? ? ? ? 2? ? A. ?0, ? B. ? , ? C. ? , ? ? 6? ?6 6 ? ?6 3 ?
例 5. 利用单位圆写出符合下列条件的角 x 的范围.

? 5? ? D. ? ,? ? ?6 ?

1 (1) sin x ? ? ; 2
答案: (1)

( 2) c o sx ?

1 . 2

7? 11? ? ? ? 2k? ? x ? ? 2k? , k ? Z ; (2) ? ? 2k? ? x ? ? 2k? , k ? Z ; 6 6 6 6

三、巩固与练习:P17 面练习 四、小 结:本节课学习了以下内容: 1.三角函数线的定义; 2.会画任意角的三角函数线; 3.利用单位圆比较三角函数值的大小,求角的范围。 五、课后作业: 作业 4 参考资料 例 1.利用三角函数线比较下列各组数的大小: 1?

2? 4? s i n 与 sin 3 5

2? tan

2? 4? 与 tan 3 5

解: 如图可知:

sin

2? 4? ? sin 3 5 1 2
y P1 o x

tan

2? 4? ? tan 3 5

例 2.利用单位圆寻找适合下列条件的 0?到 360?的角 1? sin?≥ 解: 1? P2 2? tan? ?

3 3
2? y 30? T o 210? A x

7

高中数学必修 4 教案

30?≤?≤150? 30? ? ? ? 90?或 210? ? ? ? 270? 补充:1.利用余弦线比较 cos 64? ,cos 285? 的大小; 2.若

?
4

?? ?

?
2

,则比较 sin ? 、 cos ? 、 tan ? 的大小;

3.分别根据下列条件,写出角 ? 的取值范围: (1) cos? ?

3 ; 2

(2) tan ? ? ?1 ;

(3) sin ? ? ?

3 . 2

4-1.2.1 任意角的三角函数(1)
教学目的: 知识目标:1.掌握任意角的三角函数的定义; 2.已知角α 终边上一点,会求角α 的各三角函数值; 3.记住三角函数的定义域、值域,诱导公式(一) 。 能力目标: (1)理解并掌握任意角的三角函数的定义; (2)树立映射观点,正确理解三角函数是以实数为自变量的函数; (3)通过对定义域,三角函数值的符号,诱导公式一的推导,提高学生分 析、探究、解决问题的能力。 德育目标: (1)使学生认识到事物之间是有联系的,三角函数就是角度(自变量)与 比值(函数值)的一种联系方式; (2)学习转化的思想,培养学生严谨治学、一丝不苟的科学精神; 教学重点:任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各 象限的符号) ,以及这三种函数的第一组诱导公式。公式一是本小节的另一个重 点。 教学难点:利用与单位圆有关的有向线段,将任意角α 的正弦、余弦、正切函数值分别用他 们的集合形式表示出来. 教学过程: 一、复习引入:初中锐角的三角函数是如何定义的? 在 Rt△ABC 中,设 A 对边为 a,B 对边为 b,C 对边为 c,锐角 A 的正弦、余弦、正切依 次为 sinA ?

a b a , cosA ? , tanA ? . c c b

角推广后,这样的三角函数的定义不再适用,我们必须对三角函数重新定义。 二、讲解新课: 1.三角函数定义 在直角坐标系中, 设α 是一个任意角, 终边上任意一点 P (除了原点) α 的坐标为 ( x, y ) ,
2 2 它与原点的距离为 r (r ? | x | ? | y | ?

x 2 ? y 2 ? 0) ,那么

y y 叫做α 的正弦,记作 sin ? ,即 sin ? ? ; r r x x (2)比值 叫做α 的余弦,记作 cos? ,即 cos ? ? ; r r
(1)比值

8

高中数学必修 4 教案

y y 叫做α 的正切,记作 tan ? ,即 tan ? ? ; x x x x (4)比值 叫做α 的余切,记作 cot ? ,即 cot ? ? ; y y 说明:①α 的始边与 x 轴的非负半轴重合,α 的终边没有表明α 一定是正角或负角,以及α
(3)比值 的大小,只表明与α 的终边相同的角所在的位置; ②根据相似三角形的知识,对于确定的角α ,四个比值不以点 P ( x, y ) 在α 的终边上 的