tceic.com
学霸学习网 这下你爽了
赞助商链接
当前位置:首页 >> >>

课题34 线面平行与面面平行 2


课题 34
知识梳理 1.两平面平行的定义: 2.两个平面的位置关系: 位置关系 公共点 符号表示 图形表示

线面平行与面面平行(二)

3.两个平面平行的判定定理: 图形:

符号:

性质定理: 图形:

符号:

基础训练 1. α, β 是两个不重合的平面,在下列条件中,可判定 α // β 的是:__________(填序号) (1).a,b 是平面 α 内的直线,且 a// β ,b// β ; (2). α 内不共线的三点到平面 β 的距离相等; (3). α, β 都垂直于平面 γ ; (4).a,b 是两条异面直线,且均与平面 α, β 平行; 2. 下列命题正确的是:__________(填序号) (1)平行于同一条直线的两个平面平行; (2)平行于同一平面的两个平面平行; (3)垂直于同一直线的两个平面平行; (4)与同一直线成等角的两个平面平行; 3.下列命题,其中真命题的个数为 . ①直线 l 平行于平面 α 内的无数条直线,则 l∥ α ; ②若直线 a 在平面 α 外,则 a∥ α ; ③若直线 a∥b,直线 b ? α ,则 a∥ α ; ④若直线 a∥b,b ? α ,那么直线 a 就平行于平面 α 内的无数条直线. 典型例题 例 1.如图,在正方体 ABCD-A1B1C1D1 中,其棱长为 1. 求证:平面 AB1C∥平面 A1C1D.

变式拓展:在正方体 ABCD-A1B1C1D1 中,M、N、E、F 分别是棱 A1B1,A1D1,B1C1,C1D1 的中点. 求证:平面 AMN∥平面 EFDB.

例 2..已知正方体 ABCD-A′B′C′D′中,面对角线 AB′、BC′的中点分别为点 E、F,且 B′E=C′F. 求证:(1)EF∥平面 A′ACC′;(2)平面 ACD′∥平面 A′BC′.

例 3.已知平面α∥β,P ?α且 P ?β,过点 P 的直线 m 与α、β分别交于 A、C,过点 P 的直线 n 与α、β分别交于 B、D,且 PA=6,AC=9,PD=8,求 BD 的长.

提示:

作业(34)
1.设 l,m,n 是三条不同的直线,α,β,γ是三个不同的平面,给出下列命题: ①若 l∥n 且 m∥n,则 l∥m; ②若 l∥α且 m∥α,则 l∥m; ③若 n∥α且 n∥β,则α∥β; ④若α∥γ且β∥γ,则α∥β; 其中正确命题的序号是________.(把正确命题的序号都填上). 2.下列条件中,不能判断两个平面平行的是 (填序号). ①一个平面内的一条直线平行于另一个平面 ②一个平面内的两条直线平行于另一个平面 ③一个平面内有无数条直线平行于另一个平面 ④一个平面内任何一条直线都平行于另一个平面 3. 已知点 △ 是△ 所在平面外一点, 点 平面 , . , 分别是△ , △ ,

的重心,求证:平面

4. 在正方体 ABCD-A1B1C1D1 中,M、N、P 分别是 C1C、B1C1、C1D1 的中点, 求证:平面 MNP//平面 A1BD.

5.如图,在正三棱锥 S ? ABC 中, D 、 E 、 F 分别是棱 AC 、 BC 、 SC 上的点,

且 CD = 2 DA , CE = 2 ES , CF = 2 FB , G 是 AB 的中点. (1) 求证:平面 SAB ∥平面

DEF ; ( 2 ) 求证: SG ∥平面 DEF S E

A

D G B F

C

6.如图所示,夹在两个平行平面间的两条线段 AB 、 CD 交于点 O ,已知 AO =4, BO =2, CD =9,则线段 CO , DO 的长分别是多少? A C

O

D

B

7.如图,两条异面直线 AC 、 DF 与三个平行平面 α 、 β 、 γ 分别交于 A 、 B 、 C 与 D 、

E 、 F ,又 AF 、 CD 分别与 β 交于 G 、 H ,求证:四边形 HEGB 为平行四边形。

A

D

B

G H

E

F C 8. 已知 ABCD 是平行四边形,点 P 是平面 ABCD 外一点, M 是 PC 的中点,在 DM 上取一点 G, 过 G 和AP作平面交平面BDM于GH, 求证: AP // GH

P

M G D H A B C



推荐相关:

必修2-2.2线面平行面面平行的经典7道证明题

必修2-2.2线面平行面面平行的经典7道证明题_高二数学_数学_高中教育_教育专区。必修 22.2 线面平行面面平行的证明经典练习 1.直三棱柱 ABC? A1 B1...


数学必修(2)线面,面面平行练习题

数学必修(2)线面,面面平行练习题_高考_高中教育_教育专区。数学必修 2 第一章(立体几何) “平行”单元练习 组题:吴雯雯 邹永絮一.选择题 1. 若直线 m 不...


2.2.2平面与平面平行的判定教案_图文

两个平面平行的判定定理是立体几何中的一个重要定理。它揭示了线线平行、线面平行面面平行的内在联系,体现了转化的思想。 课题2.2.2 平面与平面平行的...


必修2立体几何线面、面面平行、线面、面面垂直 2

数学| 立体几何| 平行|必修2立体几何线面面面平行线面面面垂直 2_数学_高中教育_教育专区。高中数学必修2几何体结构线面证明 立体...


线面面面平行的性质

数学导学案 编号: 编写人:孙军 审核人: 课题:线面平行面面平行的性质【教学目标】 班级 1、掌握直线与平面平行的判定和性质定理,明确定理中的条件和结论 2、...


《直线与平面平行的性质》教学设计及教学反思_图文

即 “线线平行 线面平行 面面平行 三、教学目标(...理解直线与平面平行的性质定理。 2. 能利用这个性质...教师: 板书本节 课题及性质定 理内容 第 3 页共...


线导42线面面平行的习题课 郑美霞_图文

面面平行的性质定理 基础练习 1 下面说法正确的有___ (1)平行于同一平面的两直线平行; (2)与两相交平面的交线平行的直线,必与两相交平面平行。 (3)若一...


直线与平面平行的性质(教学设计)

课题:直线与平面平行的性质教材:普通高中课程标准实验教科书人教 A 版数学必修 2§2.2.3 授课教师:无为第一中学 范德泉【三维目标】 1.知识与技能 通过教师的...


线面平行

课题:必修②§2.2.1 直线与平面平行的判定广州市第四十七中学 2011-11-5 一...提高学生的空间想象能力和逻辑推理能力, 特别是对线线平行、 面面平行的判定的...


线面平行的判定

博山区实验中学 2017 级数学导学案 编号: 编写人:孙军 审核人: 课题:直线与平面平行的判定【教学目标】 1.探究直线与平面平行的判定定理. 班级 姓名 2.直线与...

网站首页 | 网站地图
All rights reserved Powered by 学霸学习网 www.tceic.com
copyright ©right 2010-2021。
文档资料库内容来自网络,如有侵犯请联系客服。zhit325@126.com