tceic.com
简单学习网 让学习变简单
当前位置:首页 >> 数学 >>

直线方程x=my+b分析


★崇艺教育★高考数学★
直线方程 x=my+b 分析
李鹏 解析几何中,在设直线方程时,习惯于用 y=kx+b 的形式,但这类直线方程不能表示与 x 轴垂直的直线,往往需要分类讨论 k 的存在与否。但当直线斜率不为零时,或过 x 轴上某 点(b,0)时,可将直线设为 x=my+b(其中 b 为横截距) ,不仅可以回避直线斜率是否存在的 分类讨论,而且有时能大大

地简化运算,达到优化解题的目的。 直线方程 x=my+b 的特征: 1. 所表示直线斜率为 1/m,若直线倾斜角为α ,则 m=cotα . 2. 直线在 x 轴上的截距为 b. 3. 能表示与 x 轴垂直的直线,但不能表示与 y 轴垂直(斜率为零)的直线。 一、解决三角形面积的问题 0 e.g.1 :抛物线 y2=2px(p>0) 的焦点为 F, AB 是过焦点的弦,且直线 AB 的倾斜角为 30 求:△OAB 的面积。

e.g.2:过点 D(2,0)的直线 L 交曲线 C:y2=4(x-1)于 P、Q 两点,E 点的坐标是(1,0) , 若△EPQ 的面积为 4,求直线 L 的倾斜角α的值。 解:依题意可设直线方程为:x=my+2 P(x1,y1) Q(x2,y2) 联立 x=my+2 消去 x 得 y2-4my-4=0 y2=4(x-1) 则:y1+y2=4m y1·y2=-4 所以:

即:α=π/6 或α=5π/6

-1-

★崇艺教育★高考数学★
e.g.3:设 F1 , F2 是椭圆 2x2 + 3y2 = 6 的左、右焦点,弦 AB 过 F2. 求△F1AB 的面积的最 大值。

总结:设直线AB 的方程为x = m y + 1,避免了对直线AB 的斜率存在与不存在的讨论. 本题 恰好是直线AB的斜率不存在时, △F1AB达到最大值因此, 在已知直线过x轴上的某点, 或在 要考虑斜率不存在的直线方程时,设此方程形式不仅能显示出其优越性,而且能回避陷入僵局 的情形. 二、用于解决点的轨迹问题 e.g.4:已知抛物线 C:y2=2px(p>0)的焦点为 F,直线 L 过定点 A(4,0) ,且与抛物线交于 P、Q 两点。 ① 若以弦 PQ 为直径的圆恒过原点 O,求抛物线 C.。 ② 在①的条件下, 求动点 R 的轨迹方程。

解:①依题意,可设直线 L 的方程为 x=my+4 联立 x=my+4 y2=2px 消去 x 得:y2-2pmy-8p=0 设 P(x1,y1) Q(x2,y2) 则:y1+y2=2pm y1y2= -8p ∴x1x2=m2y1y2+4m(y1+y2)+16= -8pm2+8pm2+16=16 由已知可得: 即:x1x2+y1y2=0 ∴16-8p=0 ∴p=2 即 y2=4x 2 ②由①知,抛物线方程为 y =4x 设动点 R(x,y) ∵F(1,0) P(x1,y1) Q(x2,y2) ∴ ∵ ∴ (x1-1,y1)+(x2-1,y2)=(x-1,y) ∴ x-1=x1+x2-2=m(y1+y2)+6 y=y1+y2 由①知:y1+y2=4m 代入上式有: x=4m2+7 y=4m 消去参数 m,得动点 R 的方程为:y2=4x-28 故:y2=4x-28 为所求动点 R 轨迹方程。
-2-

★崇艺教育★高考数学★
三、用于判断动直线是否过定点问题 e.g.5:已知点A (x0 , 2) 在曲线C: y2 = 4x上,过点A 作曲线C的两条弦AD和AE, 且AD、AE 的斜率分别为k1、k2 满足k1k2 = 2,试判断动直线DE是否过定点并证明。

四、用于解决探索性问题 e.g.6:已知抛物线 y2=4x ,在 x 轴上是否存在一点 P(b,0),使得过点 P 任意作抛物线的一 条弦,以该弦为直径的圆都过原点。若存在请求出 b 值,若不存在请说明理由。 解: 假设存在点 P (b,0) ,满足题意, 设过点 P (b,0) 作弦为 MN, 直线 MN 的方程为 x=my+b. M(x1,y1) , N(x2,y2) 联立 x=my+b. y2=4x 2 消去 x 得:y -4my-4b=0 .则:y1+y2=4m y1y2=-4b 2 ∴ x1x2=my1y2+bm(y1+y2)+b 2 =-4mb+4mb+b 2 =b 若以弦 MN 为直径的圆过原点,则有 即:x1x2+y1y2=0 2 ∴b -4b=0. 解得:b=4 或 b=0(不合题意舍去) 故,在 x 轴上存在着点 P(4,0)满足题意。 根据题设条件, 选用恰当的直线方程形式是达到求简目的的重要手段, 一旦灵活选用恰 当的方程,就可以大大简化求解过程. 当直线过圆锥曲线在x轴上的焦点或直线和圆锥曲线相 交, 且与x轴相交时, 常常可以设出直线方程为x = m y + n, 这样既避免了讨论,又提高了解题 速度。

-3-


推荐相关:

直线方程x=my+b分析

★崇艺教育★高考数学★直线方程 x=my+b 分析李鹏 解析几何中,在设直线方程时,习惯于用 y=kx+b 的形式,但这类直线方程不能表示与 x 轴垂直的直线,往往...


2015年高中数学解析几何解答题汇编(有答案)

方程. 分析: (1)根据椭圆的定义,建立方程关系...∵ B(0,b) ,∴ 直线 BF2:y=﹣ x+b,代入...由题意可设直线 l 的方程x=my+ , A(x1,...


题目ce2197c4bb4cf7ec4afed017

已知椭圆E:+=1(a>b>0)过点,且离心率e为.(1)求椭圆E的方程;(2)设直线x=my-1(m∈R)交椭圆E于A,B两点,判断点G与以线段AB为直径的圆的位置关系,并...


2014全国新课标卷Ⅰ(理科数学)精准解析

3 B.3 C. 3m D.3m 4. A [解析] 双曲线的一条渐近线的方程x+ my...x|,在直角三角形 OPM 中, 2 π 1 根据等积关系得点 M 到直线 OP 的...


江苏省苏锡常镇四市2016届高三第二次模拟考试数学试卷

a b (1) 求椭圆 C 的方程; (2) 设直线 l ...(2) ①设直线 l 的方程x=my+1,直线 l 与...x 下面列表分析导函数 f′(x)及原函数 f(x): ...


题目fe1dfffdc8d376eeaeaa312d

如图,已知直线L:x=my+1过椭圆C:+=1(a>b>0)的右焦点F,且交椭圆C于A、B两点,点A、F、B直线G;x=a2上的射影依次为点D、K、E,若抛物线x2=4y的...


2015福建高考考前高三理科数学解答题训练4《解析几何》

OB ? ?4 , 当直线 l 的倾斜角不为 0 时,直线 l 可设为 x ? my ? ...4 , b ? 3 ,∴椭圆 C 的方程为 16 9 x0 2 y0 2 9 x0 2 2 ? ...


解析几何综合2014(二) - 答案

b>0)的焦距为 4,其短轴的两个端点与长 a b ...可设直线 AB 的方程x=my-1,由 x = my-1...2014教师资格材料分析辅... 2014小学教师资格考试《...


椭圆综合练习题(二)解析

(1)求椭圆的方程; (2)过点 F1 的直线和椭圆交于两点 A 、 B ,求 ?F2...(Ⅱ)设直线 x = my - 1,(m ? R )交椭圆 E 于 A,B 两点, 9 判断...


上海市浦东新区2015届高三下学期第二次模拟考试数学(理)试卷

(x)≥kx+b 和 g(x)≤kx+b,则称直线 l:y=...(2)已知直线 l:x=my+1(m>1) ,椭圆 C: =1...切线方程. 专题: 直线与圆. 分析: 由圆的方程求...

网站首页 | 网站地图
All rights reserved Powered by 简单学习网 www.tceic.com
copyright ©right 2010-2021。
文档资料库内容来自网络,如有侵犯请联系客服。zhit325@126.com