tceic.com
简单学习网 让学习变简单
当前位置:首页 >> 数学 >>

含参数的一元二次不等式的解法(专题)


含参数的一元二次不等式的解法
解含参数的一元二次不等式,通常情况下,均需分类讨论,那么如何讨论呢?对含参一元 二次不等式常用的分类方法有三种: 一、按 x 项的系数 a 的符号分类,即 a ? 0, a ? 0, a ? 0 ;
2

例 1 解不等式: ax2 ? ?a ? 2?x ? 1 ? 0 分析:本题二次项系数含有参数, ? ?

?a ? 2? ? 4a ? a 2 ? 4 ? 0 ,故只需对二次项
2

系数进行分类讨论。 解:∵ ? ? ?a ? 2? ? 4a ? a 2 ? 4 ? 0
2

? a ? 2 ? a2 ? 4 ? a ? 2 ? a2 ? 4 解得方程 ax ? ?a ? 2?x ? 1 ? 0 两根 x1 ? , x2 ? 2a 2a
2

? ? a ? 2 ? a2 ? 4 ? a ? 2 ? a2 ? 4 ? ? ? 或x ? ∴当 a ? 0 时,解集为 ? x | x ? ? 2a 2a ? ? ? ?
当 a ? 0 时,不等式为 2 x ? 1 ? 0 ,解集为 ? x | x ?

? ?

1? ? 2?

当 a ? 0 时, 解集为 ? x |

? ? ? ?

? a ? 2 ? a2 ? 4 ? a ? 2 ? a2 ? 4 ? ? ?x? ? 2a 2a ? ?

例 2 解不等式 ax2 ? 5ax ? 6a ? 0?a ? 0? 分析 因为 a ? 0 , ? ? 0 ,所以我们只要讨论二次项系数的正负。 解

? a( x 2 ? 5x ? 6) ? a?x ? 2??x ? 3? ? 0

? 当 a ? 0 时,解集为 ?x | x ? 2或x ? 3?;当 a ? 0 时,解集为 ?x | 2 ? x ? 3?
二、按判别式 ? 的符号分类,即 ? ? 0, ? ? 0, ? ? 0 ; 例 3 解不等式 x ? ax ? 4 ? 0
2

分析 本题中由于 x 的系数大于 0,故只需考虑 ? 与根的情况。
2

解:∵ ? ? a ? 16
2

∴当 a ? ?? 4,4?即 ? ? 0 时,解集为 R ; 当 a ? ?4 即Δ =0 时,解集为 ? x x ? R且x ?

? ?

a? ?; 2?

当 a ? 4 或 a ? ?4 即 ? ? 0 ,此时两根分别为 x1 ?

? a ? a 2 ? 16 ? a ? a 2 ? 16 , x2 ? ,显然 x1 ? x 2 , 2 2

∴不等式的解集为 ? x x ?

? ? ? ?

? a ? a 2 ? 16 ? a ? a 2 ? 16 ? ? 或x〈 ? 2 2 ? ?

例 4 解不等式 m 2 ? 1 x 2 ? 4 x ? 1 ? 0?m ? R? 解 因 m 2 ? 1 ? 0, ? ? (?4) 2 ? 4 m 2 ? 1 ? 4 3 ? m 2 所以当 m ? ? 3 ,即 ? ? 0 时,解集为 ? x | x ?

?

?

?

? ?

?

? ?

1? ?; 2?

当 ? 3 ? m ? 3 ,即 ? ? 0 时,解集为 ? x x ?

? ? ? ?

2 ? 3 ? m2 2 ? 3 ? m2 或 x 〈 m2 ? 1 m2 ? 1

? ? ?; ? ?

当 m ? ? 3或m ? 3 ,即 ? ? 0 时,解集为 R。 三、按方程 ax ? bx ? c ? 0 的根 x1 , x 2 的大小来分类,即 x1 ? x2 , x1 ? x2 , x1 ? x2 ;
2

1 ) x ? 1 ? 0 (a ? 0) a 1 分析:此不等式可以分解为: ? x ? a ?( x ? ) ? 0 ,故对应的方程必有两解。本题 a
例5 解不等式 x ? (a ?
2

只需讨论两根的大小即可。 解:原不等式可化为: ? x ? a ?( x ? ∴当 a ? ?1 或 0 ? a ? 1 时, a ? 当 a ? 1 或 a ? ?1 时, a ?

1 1 ) ? 0 ,令 a ? ,可得: a ? ?1 a a

1 1? ? ,故原不等式的解集为 ? x | a ? x ? ? ; a a? ?

1 ,可得其解集为 ? ; a 1 ? 1 ? ,解集为 ? x | ? x ? a ? 。 a ? a ?

当 ? 1 ? a ? 0 或 a ? 1 时, a ?

2 2 例 6 解不等式 x ? 5ax ? 6a ? 0 , a ? 0

分析 此不等式 ? ? ?? 5a? ? 24a 2 ? a 2 ? 0 ,又不等式可分解为 ?x ? 2a ?( x ? 3a) ? 0 ,故只需比较两根
2

2 a 与 3a 的大小.
解 原不等式可化为: ?x ? 2a ?( x ? 3a) ? 0 ,对应方程 ?x ? 2a ?( x ? 3a) ? 0 的两根为

x1 ? 2a, x2 ? 3a ,当 a ? 0 时,即 2a ? 3a ,解集为 ?x | x ? 3a或x ? 2a?;当 a ? 0 时,即 2a ? 3a ,解集为

?x | x ? 2a或x ? 3a?


推荐相关:

含参数的一元二次不等式的解法以及含参不等式恒成立问题(专题)

含参数的一元二次不等式的解法以及含参不等式恒成立问题(专题)_数学_高中教育_教育专区。含参数的一元二次不等式的解法解含参数的一元二次不等式,通常情况下,...


含参数的一元二次不等式的解法

含参数的一元二次不等式的解法题型 1:二次项系数为常数(能因式分解) (x-a)(x-2)>0 (x+a)(x-2)<0 例 1.解关于 x 的不等式 1 x 2 ? (a ? ...


含参一元二次不等式专项训练

含参一元二次不等式专题训练解答题(共 12 小题) 1.已知不等式(ax﹣1) (...该题考查含参数的一元二次不等式的解法, 考查分类讨论思想, 若二次系数为参数...


含参数的一元二次不等式的解法

专题推荐 北师大二附理科学霸高中... 东北师大附中理科学霸高... 西安交大附中...含参数的一元二次不等式的解法基础知识: 2 2 1.一元二次不等式的形式: ax...


北京四中---高中数学高考综合复习 专题十八 含有参数的不等式问题

不等式解法是不等式这一板块的高考备考重点,其中,含有参数的不等式的问题,是主...(1,4)的基础上,进一步将问题转化为已知一元二次不等式的解集,而这样的问题...


含参不等式的解法举例

含参不等式的解法举例。高考数学专题复习含参不等式的解法举例当在一个不等式中...一、含参数的一元二次不等式的解法: 含参数的一元二次不等式的解法: 2 例...


含参数的一元二次不等式的分类讨论

当大家对解一般的一元二次不等式打下良好基础后, 就进入了这 节课的重点及难点部分即含参数的一元二次不等式的解法, 这个点要 做为一个专题进行讲解至少要用...


2014高三一轮专题复习--不等关系与一元二次不等式(有详细答案)

的不等关系,含有这些不等号的式子,叫做不等式. 2...a 思维升华 含有参数的不等式的求解,往往需要对参数...不等式可以等价转化,利用一元二次不等式的解法进行...


3.2.2含参数的一元二次不等式的解法(例题精讲)

3.2.2含参数的一元二次不等式的解法(例题精讲)_数学_高中教育_教育专区。...专题推荐 2014下半年教师资格...专题 2014教师资格材料分析辅... 2014小学...

网站首页 | 网站地图
All rights reserved Powered by 简单学习网 www.tceic.com
copyright ©right 2010-2021。
文档资料库内容来自网络,如有侵犯请联系客服。zhit325@126.com