tceic.com
简单学习网 让学习变简单
当前位置:首页 >> 其它课程 >>

计量经济学Lecture 6-1


Heteroskedasticity
Heteroskedasticity Robust Standard Error BP test White test Weighted Least Squares (WLS) Estimators Generalized Least Squares (GLS) Estimators

1

Route of Today

?

? ?

?

Release one of our CLM assumptions ------Homoskedasticity What happen if so? How do we test the hetroskedasiticity? How to solve Hetroskedasiticity problem?

2

Assumption discusses:
CLM Assumptions:

MLR.1:Linear in parameters MLR.2:Random Sampling(Exogenously generated data) MLR.3:Zero Conditional Mean(Exogeneity of the independent variables) MLR.4:No perfect collinearity(Fulll Rank of X) MLR.5:Homoskedasticiy and nonautocorrelation MLR.6:Normal distribution: the error term are normally distributed
3

Heteroskedasticity
y = b0 + b1x1 + b2x2 + . . . bkxk + u

Var (ui | X i ) ? ? i ? cons tan t
2

4

What is Heteroskedasticity?
If homoskedasiticity is not true, that is if the variance of u is different for different values of the x’s, then the errors are heteroskedastic ? Example: 1.Estimating returns to education and ability is unobservable, and think the variance in ability differs by educational attainment 2.Estimating saving on income.
?
5

Example of Heteroskedasticity
f(y|x)

.
x1 x2 x3

.

.

E(y|x) = b0 + b1x

x
6

Variance with Heteroskedasticity
For the simple regression case, ? ? b ? ? ? xi ? x ?ui , b1 1 2 ? ?xi ? x ?

? so Var b1 ?

? ?

? ?x

? x ? ? i2 i , 2 SSTx
2 2

where SSTx ? ? ? xi ? x ?

A valid estimator for this when ? i2 ? ? 2is

? ?x

? ? x ? ui2 i ? , where ui are the OLS residuals 2 SSTx
2

7

Variance with Heteroskedasticity
For the general multiple regression model, ? a valid estimator of Var b with heterosked asticity is

? ? ? ? r? u ? ? Var ?b ? ? SSR
j j

2 2 ij i 2 j

,

?ij is the i th residual from where r regressing x j on all other independen t variables, and SSRj is the sum of squared residuals from this regression
8

If there exists Heteroscedasticity,
1. OLS estimator is not the smallest variance. E.g.
?

Yi ? b 0 ? b1 X i ? ui if Var (ui ) ? ? X
2 2

2 i

?)?? Var ( b
1

?x X (? x )

2 2 i i 2 2 i

?x ? (? x )
?
2

2 i 2 2 i

Heteroscedasticity

Homoscedasticity
9

If there exists Heteroskedasticity,
? ?

2. Hypothesis test error E.g H : b ? 0
0 1

t ?

? b1 ? Var ( b1 )

overvalued

3. Difficult to get confidence interval

? ? b1 ? b1 ? ta (n ? k ) Var ( b1 )
2

4. Confidence interval of explained variable is predicted uncorrectly
10

Why Worry About Heteroskedasticity?
OLS is still unbiased and consistent, even if we do not assume homoskedasticity ? The standard errors of the estimates are biased if we have heteroskedasticity ? If the standard errors are biased, we can not use the usual t statistics or F statistics for testing our hypothesis.
?
11

To find the Heteroskedasticity.
1. Residual graph E.g. SAVING.DTA 2. Goldfeld-Quandt test

n?c ? e /( 2 ? k ) ? e22i F? ? 2 n?c 2 ? e1i ? e1i /( 2 ? k )
2 2i
12

3. The Breusch-Pagan Test
Essentially want to test H0: Var(u|x1, x2,…, xk) = s2, which is equivalent to H0: E(u2|x1, x2,…, xk) = E(u2) = s2 ? If assume the relationship between u2 and xj will be linear, can test as a linear restriction ? So, for u2 = d0 + d1x1 +…+ dk xk + v this means testing H0: d1 = d2 = … = dk = 0
?
13

The Breusch-Pagan Test (cont.)
Don’t observe the error, but can estimate it with the residuals from the OLS regression ? After regressing the residuals squared on all of the x’s, can use the R2 to form an F or LM test ? The F statistic is just the reported F statistic for overall significance of the regression F = [R2/k]/[(1 – R2)/(n – k – 1)], which is distributed Fk, n – k - 1 ? The LM statistic is LM = nR2, which is distributed c2k
?
? Eg. HPRICE1.dTA
14

Steps of B-P test

Yt ? b 0 ? b1 X 1t ? ...... ? b k X kt ? ui Var (ut ) ? ? ? ? 0 ? ?1Z1 ? ...... ? ? p Z p
2 t

Z? X

H 0 : ?1 ? ? 2 ? ...... ? ? p ? 0 H1 : ?1 ? 0,? 2 ? 0......,? p ? 0
15

Steps of B-P test (cont.)

? ? ? et ? Yt ? b 0 ? b1 X 1t ? ...... ? b k X kt

?e ? ? ?
2

2 t

n

e ? ? 0 ? ?1Z1 ? ...... ? ? p Z p ? Vt ?2 ? ESS 2 ~ ? ( p) 2
16

2 t

4.The White Test
The Breusch-Pagan test will detect any linear forms of heteroskedasticity ? The White test allows for nonlinearities by using squares and crossproducts of all the x’s ? Still just using an F or LM to test whether all the xj, xj2, and xjxh are jointly significant
?

17

Alternate form of the White test
Consider that the fitted values from OLS, ?, are a function of all the x’s ? Thus, ?2 will be a function of the squares and crossproducts and ? and ?2 can proxy for all of the xj, xj2, and xjxh, so ? Regress the residuals squared on ? and ?2 and use the R2 to form an F or LM statistic ? Note only testing for 2 restrictions now
?
18

Robust Standard Errors
?

?

?

?

We have a consistent estimate of the variance, the square root can be used as a standard error n for inference rij2ui2 ?? ? ? ? Var ( b j ) ? i ?1 2 SSRj Typically call these robust standard errors, sometimes called White,Huber,or Eicker standard error. Sometimes the estimated variance is corrected for degrees of freedom by multiplying by n/(n – k – 1) 19 As n → ∞ it’s all the same, though

Robust Standard Errors (cont)
Important to remember that these robust standard errors only have asymptotic justification – with small sample sizes t statistics formed with robust standard errors will not have a distribution close to the t, and inferences will not be correct ? In Stata, robust standard errors are easily obtained using the robust option of reg as: reg income age edu exp….., robust
?
20

A Robust LM Statistic
?

?

?

?

Run OLS on the restricted model and save the residuals ? Regress each of the excluded variables on all of the included variables (q different regressions) and save each set of residuals ?1, ?2, …, ?q Regress a variable defined to be = 1 on ?1 ?, ?2 ?, …, ?q ?, with no intercept The LM statistic is n – SSR1, where SSR1 is the sum of squared residuals from this final regression
21

Weighted Least Squares
While it’s always possible to estimate robust standard errors for OLS estimates, if we know something about the specific form of the heteroskedasticity, we can obtain more efficient estimates than OLS ? The basic idea is going to be to transform the model into one that has homoskedastic errors – called weighted least squares
?
22

If the Heteroskedasticity is Known
?

Let x denote all the explanatory variables and assume:

?

?

Var(u | x) ? ? h( x) Where h(x ) is some function of the explanatory variables that determines the heteroskedasticity. And it is needed: h( x) ? 0
2

23

Example
?

The simple saving function:

savi ? b 0 ? b1inci ? ui Var(ui | inci ) ? ? inci
2

here : h( x ) ? h(inc) ? inc
?

Means the variance of the error is proportional to the level of income.

24

Then
yi ? b 0 ? b1 xi1 ? b 2 xi 2 ? ...... ? b k xik ? ui Var(ui | xi ) ? E (u | xi ) ? ? hi
2 i 2

Var(ui yi or

hi ) ? E ((ui

hi ) 2 ) ? ? 2 hi hi ? ? 2 hi ) ? b 2 ( xi 2 hi ) ? ...... ? b k ( xik hi ) ? ui hi

Now take the weight : hi ? b 0 hi ? b1 ( xi1

y *i ? b 0 x*i 0 ? b1 x*i1 ? b 2 x*i 2 ? ...... ? b k x*ik ? u *i
These are examples of generalized least squares(GLS) estimators. In this case, we call weighted least square(WLS) estimators
25

Weighted Least Squares(Cont.)
eg. Wi ? 1 let X ?
* * i

?

2 i

, i ? 1,2.....n
i i

?W X ?W
i * i

Y

*

?

?W Y ?W
i i *

i

x ? Xi ? X y ? Yi ? Yi ? ? then b * ? Y * ? b X *
* i 0

Wi yi* xi* ? b i* ? ? Wi ( xi* ) 2 ?
26

Generalized Least Squares
Estimating the transformed equation by OLS is an example of generalized least squares (GLS) ? GLS will be BLUE in this case ? GLS is a weighted least squares (WLS) procedure where each squared residual is weighted by the inverse of Var(ui|xi)
?
27

Weighted Least Squares
While it is intuitive to see why performing OLS on a transformed equation is appropriate, it can be tedious to do the transformation ? Weighted least squares is a way of getting the same thing, without the transformation ? Idea is to minimize the weighted sum of squares (weighted by 1/hi)
?
28

More on WLS

WLS is great if we know what Var(ui|xi) looks like. ? The problem is: in most cases, we don’t know the form of heteroskedasticity.
?

29

Case of form being known up to a multiplicative constant
?

?

?

Suppose the heteroskedasticity can be modeled as Var(u|x) = s2h(x), where the trick is to figure out what h(x) ≡ hi looks like E(ui/√hi|x) = 0, because hi is only a function of x, and Var(ui/√hi|x) = s2, because we know Var(u|x) = s 2 hi So, if we divided our whole equation by √hi we would have a model where the error is homoskedastic
30

Feasible GLS
More typical is the case where you don’t know the form of the heteroskedasticity ? In this case, you need to estimate h(xi) ? Typically, we start with the assumption of a fairly flexible model, such as ? Var(u|x) = s2exp(d0 + d1x1 + …+ dkxk) ? Since we don’t know the d, must estimate
?
31

Feasible GLS (continued)
Our assumption implies that u2 = s2exp(d0 + d1x1 + …+ dkxk)v ? Where E(v|x) = 1, then if E(v) = 1 ? ln(u2) = a0 + d1x1 + …+ dkxk + e ? Where E(e) = 1 and e is independent of x ? Now, we know that ?is an estimate of u, so we can estimate this by OLS
?
32

Feasible GLS (continued)
Now, an estimate of h is obtained as ? = exp(?), and the inverse of this is our weight ? Run the original OLS model, save the residuals, ? square them and take the log , 2 ? Regress ln(? ) on all of the independent variables and get the fitted values, ? ? Do WLS using 1/exp(?) as the weight
?
33

WLS Wrapup
?

?

?

When doing F tests with WLS, form the weights from the unrestricted model and use those weights to do WLS on the restricted model as well as the unrestricted model Remember we are using WLS just for efficiency – OLS is still unbiased & consistent Estimates will still be different due to sampling error, but if they are very different then it’s likely that some other Gauss-Markov assumption is false
34

? ?

8.4,8.6,8.7 C8.2, C8.7


推荐相关:

计量经济学 习题解答 chapter1

计量经济学 习题解答 chapter1_经济学_高等教育_...I spend almost an entire lecture talking about ...(i) The average of educ is about 12.6 years...


计量经济学 试验 第七章滞后变量

中级计量经济学Lecture ... 60页 2下载券 计量经济学滞后变量模型 暂无评价 57...2.6558 7.4705 4.1313 7.6333 0.0380 0.0108 2.1374 6.4722 0.1790...


第三章答案计量经济学

3页 免费 计量经济学第三章作业答案 2页 1财富值喜欢此文档的还喜欢 关于中国...1页 免费 Lecture 3 British Monarc... 26页 2财富值如要投诉违规内容,请到...


伍德里奇计量经济学英文版各章总结

伍德里奇计量经济学英文版各章总结_财务管理_经管营销...I spend almost an entire lecture talking about ...I use the example in Table 6.1 to quickly ...


计量经济学教材P128:异方差练习题5

中级计量经济学Lecture ... 60页 2下载券 计量经济学 第五章 异方... 32页 1下载券 计量经济学 第五章 异方... 52页 免费 计量经济学 第五章 异方....


中级宏观 lecture 2

中级计量经济学Lecture 2 60页 5财富值 宏观经济学Lecture 2-Chap... 27页 2财富值 宏观经济学Lecture 1-Chap... 22页 2财富值 lecture 2 宏观经济运行的...


710 band 6 Test 1_2

计量经济学异方差性及修正... 8页 5财富值 受限约束回归的检验 23页 1财富...Q: What did the man think of the lecture? B 语气判断题男士的回答用否定...


广东金融学院2012-2013第2学期金融专业硕士研究生

(研究生处 2013 年 1 月) 一、课程总量及课程...(4)Blanchard, O.,Fischer,S., Lecture on ...具备计量经济学基础的学生介绍如何利用金 -6- 融...


第四届量化历史讲习班暨第四届量化历史研究年会日程安排20160629

正式上课 时间:7 月 6 日到 7 月 16 日每天 9:00 开始(其中,7 月 12...(陈强) Lecture1: 计量经济学及 Stata 入门 Lecture2: 计量经济学及 Stata ...


应用统计学培养方案2015.6.18

计量经济、金融等)专门知识,能运用所学的理论、方 ...6 2 3 综合 综合 1 1 考查 考查 考查 2 2...(报告) Academic Lecture 社会实践 Social Practice ...

网站首页 | 网站地图
All rights reserved Powered by 简单学习网 www.tceic.com
copyright ©right 2010-2021。
文档资料库内容来自网络,如有侵犯请联系客服。zhit325@126.com