tceic.com
学霸学习网 这下你爽了
相关标签
当前位置:首页 >> 其它课程 >>

计量经济学Lecture 6-1


Heteroskedasticity
Heteroskedasticity Robust Standard Error BP test White test Weighted Least Squares (WLS) Estimators Generalized Least Squares (GLS) Estimators

1

Route of Today

?

? ?

?

Release one of our CLM assumptions ------Homoskedasticity What happen if so? How do we test the hetroskedasiticity? How to solve Hetroskedasiticity problem?

2

Assumption discusses:
CLM Assumptions:

MLR.1:Linear in parameters MLR.2:Random Sampling(Exogenously generated data) MLR.3:Zero Conditional Mean(Exogeneity of the independent variables) MLR.4:No perfect collinearity(Fulll Rank of X) MLR.5:Homoskedasticiy and nonautocorrelation MLR.6:Normal distribution: the error term are normally distributed
3

Heteroskedasticity
y = b0 + b1x1 + b2x2 + . . . bkxk + u

Var (ui | X i ) ? ? i ? cons tan t
2

4

What is Heteroskedasticity?
If homoskedasiticity is not true, that is if the variance of u is different for different values of the x’s, then the errors are heteroskedastic ? Example: 1.Estimating returns to education and ability is unobservable, and think the variance in ability differs by educational attainment 2.Estimating saving on income.
?
5

Example of Heteroskedasticity
f(y|x)

.
x1 x2 x3

.

.

E(y|x) = b0 + b1x

x
6

Variance with Heteroskedasticity
For the simple regression case, ? ? b ? ? ? xi ? x ?ui , b1 1 2 ? ?xi ? x ?

? so Var b1 ?

? ?

? ?x

? x ? ? i2 i , 2 SSTx
2 2

where SSTx ? ? ? xi ? x ?

A valid estimator for this when ? i2 ? ? 2is

? ?x

? ? x ? ui2 i ? , where ui are the OLS residuals 2 SSTx
2

7

Variance with Heteroskedasticity
For the general multiple regression model, ? a valid estimator of Var b with heterosked asticity is

? ? ? ? r? u ? ? Var ?b ? ? SSR
j j

2 2 ij i 2 j

,

?ij is the i th residual from where r regressing x j on all other independen t variables, and SSRj is the sum of squared residuals from this regression
8

If there exists Heteroscedasticity,
1. OLS estimator is not the smallest variance. E.g.
?

Yi ? b 0 ? b1 X i ? ui if Var (ui ) ? ? X
2 2

2 i

?)?? Var ( b
1

?x X (? x )

2 2 i i 2 2 i

?x ? (? x )
?
2

2 i 2 2 i

Heteroscedasticity

Homoscedasticity
9

If there exists Heteroskedasticity,
? ?

2. Hypothesis test error E.g H : b ? 0
0 1

t ?

? b1 ? Var ( b1 )

overvalued

3. Difficult to get confidence interval

? ? b1 ? b1 ? ta (n ? k ) Var ( b1 )
2

4. Confidence interval of explained variable is predicted uncorrectly
10

Why Worry About Heteroskedasticity?
OLS is still unbiased and consistent, even if we do not assume homoskedasticity ? The standard errors of the estimates are biased if we have heteroskedasticity ? If the standard errors are biased, we can not use the usual t statistics or F statistics for testing our hypothesis.
?
11

To find the Heteroskedasticity.
1. Residual graph E.g. SAVING.DTA 2. Goldfeld-Quandt test

n?c ? e /( 2 ? k ) ? e22i F? ? 2 n?c 2 ? e1i ? e1i /( 2 ? k )
2 2i
12

3. The Breusch-Pagan Test
Essentially want to test H0: Var(u|x1, x2,…, xk) = s2, which is equivalent to H0: E(u2|x1, x2,…, xk) = E(u2) = s2 ? If assume the relationship between u2 and xj will be linear, can test as a linear restriction ? So, for u2 = d0 + d1x1 +…+ dk xk + v this means testing H0: d1 = d2 = … = dk = 0
?
13

The Breusch-Pagan Test (cont.)
Don’t observe the error, but can estimate it with the residuals from the OLS regression ? After regressing the residuals squared on all of the x’s, can use the R2 to form an F or LM test ? The F statistic is just the reported F statistic for overall significance of the regression F = [R2/k]/[(1 – R2)/(n – k – 1)], which is distributed Fk, n – k - 1 ? The LM statistic is LM = nR2, which is distributed c2k
?
? Eg. HPRICE1.dTA
14

Steps of B-P test

Yt ? b 0 ? b1 X 1t ? ...... ? b k X kt ? ui Var (ut ) ? ? ? ? 0 ? ?1Z1 ? ...... ? ? p Z p
2 t

Z? X

H 0 : ?1 ? ? 2 ? ...... ? ? p ? 0 H1 : ?1 ? 0,? 2 ? 0......,? p ? 0
15

Steps of B-P test (cont.)

? ? ? et ? Yt ? b 0 ? b1 X 1t ? ...... ? b k X kt

?e ? ? ?
2

2 t

n

e ? ? 0 ? ?1Z1 ? ...... ? ? p Z p ? Vt ?2 ? ESS 2 ~ ? ( p) 2
16

2 t

4.The White Test
The Breusch-Pagan test will detect any linear forms of heteroskedasticity ? The White test allows for nonlinearities by using squares and crossproducts of all the x’s ? Still just using an F or LM to test whether all the xj, xj2, and xjxh are jointly significant
?

17

Alternate form of the White test
Consider that the fitted values from OLS, ?, are a function of all the x’s ? Thus, ?2 will be a function of the squares and crossproducts and ? and ?2 can proxy for all of the xj, xj2, and xjxh, so ? Regress the residuals squared on ? and ?2 and use the R2 to form an F or LM statistic ? Note only testing for 2 restrictions now
?
18

Robust Standard Errors
?

?

?

?

We have a consistent estimate of the variance, the square root can be used as a standard error n for inference rij2ui2 ?? ? ? ? Var ( b j ) ? i ?1 2 SSRj Typically call these robust standard errors, sometimes called White,Huber,or Eicker standard error. Sometimes the estimated variance is corrected for degrees of freedom by multiplying by n/(n – k – 1) 19 As n → ∞ it’s all the same, though

Robust Standard Errors (cont)
Important to remember that these robust standard errors only have asymptotic justification – with small sample sizes t statistics formed with robust standard errors will not have a distribution close to the t, and inferences will not be correct ? In Stata, robust standard errors are easily obtained using the robust option of reg as: reg income age edu exp….., robust
?
20

A Robust LM Statistic
?

?

?

?

Run OLS on the restricted model and save the residuals ? Regress each of the excluded variables on all of the included variables (q different regressions) and save each set of residuals ?1, ?2, …, ?q Regress a variable defined to be = 1 on ?1 ?, ?2 ?, …, ?q ?, with no intercept The LM statistic is n – SSR1, where SSR1 is the sum of squared residuals from this final regression
21

Weighted Least Squares
While it’s always possible to estimate robust standard errors for OLS estimates, if we know something about the specific form of the heteroskedasticity, we can obtain more efficient estimates than OLS ? The basic idea is going to be to transform the model into one that has homoskedastic errors – called weighted least squares
?
22

If the Heteroskedasticity is Known
?

Let x denote all the explanatory variables and assume:

?

?

Var(u | x) ? ? h( x) Where h(x ) is some function of the explanatory variables that determines the heteroskedasticity. And it is needed: h( x) ? 0
2

23

Example
?

The simple saving function:

savi ? b 0 ? b1inci ? ui Var(ui | inci ) ? ? inci
2

here : h( x ) ? h(inc) ? inc
?

Means the variance of the error is proportional to the level of income.

24

Then
yi ? b 0 ? b1 xi1 ? b 2 xi 2 ? ...... ? b k xik ? ui Var(ui | xi ) ? E (u | xi ) ? ? hi
2 i 2

Var(ui yi or

hi ) ? E ((ui

hi ) 2 ) ? ? 2 hi hi ? ? 2 hi ) ? b 2 ( xi 2 hi ) ? ...... ? b k ( xik hi ) ? ui hi

Now take the weight : hi ? b 0 hi ? b1 ( xi1

y *i ? b 0 x*i 0 ? b1 x*i1 ? b 2 x*i 2 ? ...... ? b k x*ik ? u *i
These are examples of generalized least squares(GLS) estimators. In this case, we call weighted least square(WLS) estimators
25

Weighted Least Squares(Cont.)
eg. Wi ? 1 let X ?
* * i

?

2 i

, i ? 1,2.....n
i i

?W X ?W
i * i

Y

*

?

?W Y ?W
i i *

i

x ? Xi ? X y ? Yi ? Yi ? ? then b * ? Y * ? b X *
* i 0

Wi yi* xi* ? b i* ? ? Wi ( xi* ) 2 ?
26

Generalized Least Squares
Estimating the transformed equation by OLS is an example of generalized least squares (GLS) ? GLS will be BLUE in this case ? GLS is a weighted least squares (WLS) procedure where each squared residual is weighted by the inverse of Var(ui|xi)
?
27

Weighted Least Squares
While it is intuitive to see why performing OLS on a transformed equation is appropriate, it can be tedious to do the transformation ? Weighted least squares is a way of getting the same thing, without the transformation ? Idea is to minimize the weighted sum of squares (weighted by 1/hi)
?
28

More on WLS

WLS is great if we know what Var(ui|xi) looks like. ? The problem is: in most cases, we don’t know the form of heteroskedasticity.
?

29

Case of form being known up to a multiplicative constant
?

?

?

Suppose the heteroskedasticity can be modeled as Var(u|x) = s2h(x), where the trick is to figure out what h(x) ≡ hi looks like E(ui/√hi|x) = 0, because hi is only a function of x, and Var(ui/√hi|x) = s2, because we know Var(u|x) = s 2 hi So, if we divided our whole equation by √hi we would have a model where the error is homoskedastic
30

Feasible GLS
More typical is the case where you don’t know the form of the heteroskedasticity ? In this case, you need to estimate h(xi) ? Typically, we start with the assumption of a fairly flexible model, such as ? Var(u|x) = s2exp(d0 + d1x1 + …+ dkxk) ? Since we don’t know the d, must estimate
?
31

Feasible GLS (continued)
Our assumption implies that u2 = s2exp(d0 + d1x1 + …+ dkxk)v ? Where E(v|x) = 1, then if E(v) = 1 ? ln(u2) = a0 + d1x1 + …+ dkxk + e ? Where E(e) = 1 and e is independent of x ? Now, we know that ?is an estimate of u, so we can estimate this by OLS
?
32

Feasible GLS (continued)
Now, an estimate of h is obtained as ? = exp(?), and the inverse of this is our weight ? Run the original OLS model, save the residuals, ? square them and take the log , 2 ? Regress ln(? ) on all of the independent variables and get the fitted values, ? ? Do WLS using 1/exp(?) as the weight
?
33

WLS Wrapup
?

?

?

When doing F tests with WLS, form the weights from the unrestricted model and use those weights to do WLS on the restricted model as well as the unrestricted model Remember we are using WLS just for efficiency – OLS is still unbiased & consistent Estimates will still be different due to sampling error, but if they are very different then it’s likely that some other Gauss-Markov assumption is false
34

? ?

8.4,8.6,8.7 C8.2, C8.7


推荐相关:

计量经济学复习要点1

计量经济学复习要点参考教材:伍德里奇 《计量经济学导论》 第 1 章 绪论数据...? s2 (X'X)-1 var(?? 假设 验 第 6 章 多元回归分析:专题测度单位对 ...


计量经济学参考答案

计量经济学参考答案_经济/市场_经管营销_专业资料。第一章 1.6 一个完整的计量...6)答:错误。 理由: 在多元回归模型中, 可能会由于多重共线性的存在导致 R ...


【图文】庞皓计量经济学(第三版)6-11章数据汇总

庞皓计量经济学(第三版)6-11章数据汇总_经济学_高等教育_教育专区。庞皓计量...6.545 1.1808 4.3219 6.1501 0.1533 4.7588 6.4053 4.816 0.9446 5....


计量经济学简明教程 第一章习题

(5) 计量经济学模型主要有哪些应用领域?各自的原理是什么? (6) 模型的检验包括几个方面?其具体含义是什么? 3. 分析题 (1) 下列假想模型是否属于揭示因果关系...


计量经济学第六章课后作业

计量经济学章课后作业_经济学_高等教育_教育专区。计量经济学第二版第六章课后习题。6.1 美国 1960~1995 年 36 年个人实际可支配收入 X 和个人实际消费支...


计量经济学课后题答案

计量经济学 CHAPTER 1 TEACHING NOTES You have ...I spend almost an entire lecture talking about ...(i) The average of educ is about 12.6 years...


计量经济学作业1-4

计量经济学作业1-4_数学_自然科学_专业资料。课后作业 作业 1、双对数模型 ...5. 什么是计量经济模型检验,模型检验包含哪些方面? 6.多元线性回归模型的古典...


计量经济学多元线性回归、多重共线性、异方差实验报告

计量经济学实验报告 多元线性回归、多重共线性、异方差实验报告 一、研究目的和...70756 27683 62679 6023 57077 31280 8741 12196 40451 固定资产 694252.30 ...


计量经济学实验报告1

计量经济学实验报告1_学习总结_总结/汇报_实用文档。《计量经济学》 课程实践...Error 1285.933 0.007001 0.020934 12.43558 0.006747 t-Statistic -2.6...


计量经济学第六章

计量经济学章_数学_自然科学_专业资料。计量经济学章练习题 6.1 北京市连续 19 年城镇居民家庭人均收入与人均支出(以 人均实际收入和人均实际支出) (1...

网站首页 | 网站地图
All rights reserved Powered by 学霸学习网 www.tceic.com
copyright ©right 2010-2021。
文档资料库内容来自网络,如有侵犯请联系客服。zhit325@126.com