tceic.com
学霸学习网 这下你爽了
相关标签
当前位置:首页 >> 数学 >>

高中数学课堂教学实录


高中数学课堂教学实录
——函数单调性
天祝一中数学组 史彩霞 教学目的:理解函数单调性概念,掌握判断函数单调性的方法,会证明一些简单函数在某个 区间上的单调性。 教学重点:函数单调性的概念与判断 一、问题情境 1.情境:函数是描述事物运动变化规律的数学模型。如果了解了函数的变化规律,那么也就 把握了相应事物的变化规律。因此研究函数的性质是非常重要的。 2.问题

:2008 年北京奥运会开幕式由原定的 7 月 25 日推迟到 8 月 8 日,你知道其中的原因 吗?怎样用数学语言刻画“随着时间的增大气温逐步升高”这一特征? 二、学生活动 1 2 问题 1 分别作出函数 y=x+1,y=-x+1,y= x 以及 y= (x≠0)的图象,并观察自变量变化时,函数 x 值有什么变化规律? y y
y=x+1, x∈R y=-x+1, x∈R

O O (1) x (2)

x

y=x2,

y

y
1 y= , x x∈(0,+∞) 1

O 1 2 ?1 (3)

x

O

1

x

(4)

在学生画图的基础上,引导学生观察图象,获得信息:第一个图象从左往右上升,y 随 x 的增大 而增大;第二个图象从左往右下降, y 随 x 的增大而减小.对第三,第四个图象进行讨论,让学生

知道函数这两个性质是对定义域内某个区间而言的,是函数的局部性质. 问题 2 能否用自己的语言来说明“图象呈逐渐上升趋势”与“图象呈逐渐下降趋势”的意 思? 讨论得到: 在相应区间上较大自变量对应较大函数值——图象呈逐渐上升趋势 在相应区间上较大自变量对应较小函数值——图象呈逐渐下降趋势 问题 3 如何用数学语言来准确地表述函数的单调性呢? 学生讨论老师指导 师:能不能说, 由于 x=1 时, y=3; x=2 时, y=5 就说随着 x 的增大, 函数值 y 也随着增大? 生:不能.应该对定义域内的每个自变量都成立 师:那我们在理解函数概念的时候要抓住什么关键词? 生:在定义域内的某个区间上,都有 1 师:回答的很好,反比例 y= (x≠0)在(-∞,0)和(0,+∞)是减函数,能否说它整个定义域上是 x 减函数? 生:不能!因为离开了定义域根本谈不上增减性. 师:继续考虑:我们能否说一个函数在 x=5 时是递增或递减的?为什么? 生:不能因为此时函数是一个数. 师:对!函数在某点上,由于它的函数值是唯一确定的常数,因而没有增减变化,所以在求单调区 间时,若端点在定义域内,包不包括端点都可以,但我们要求”能逼则逼”. 那么,如果函数 y=f(x)在某个区间上是增函数或减函数, 那么就说函数 y=f(x)在这个区间上具 有单调性,这个区间就叫做函数 y=f(x)的单调区间。 三、数学应用 例 1 如图所示是定义在[0,24]上的函数 f(x)的图象,说出 f(x)的单调区间,并回答每一个区间 上, f(x)是增函数还是减函数?
10 8 6 4 2 -2

y

y=f(x),x∈[0,24]

O

1 2

4

6

8

10

12

14 16

18 20

22 24

x

例 2 观察下列函数的图象(如图 5) ,并指出它们是否为定义域上的增函数: y y y=|x-1|-1 y=(x-1)2 1 o
o 1

x

x

-1

图5 学生总结:函数 y=(x-1)2 与 y=|x-1|-1 的图象在 x≥1 时随着 x 值的增大而上升,在 x≤ 1 时随着 x 的值的增大而下降.所以,这两个函数在定义域上不是增函数 例 3 证明函数 f(x)=-
1 -1 在区间(-∞,0)上是增函数. x
1 1 -1)-(- - x1 x2

证明 设 x1<x2<0,则 x1-x2<0 且 x1x2>0.因为 f(x1)-f(x2)=(- 1)=

x ?x 1 1 1 - = 1 2 <0,即 f(x1)<f(x2),所以,函数 f(x)=- -1 在区间(-∞,0)上 x2 x1 x1 x 2 x

是增函数. 例 4 讨论函数 f(x)=x2-2ax+3 在(-2,2)内的单调性 解: ∵f(x)=x2-2ax+3=(x-a)2+3- a2,对称轴为 x=a, ∴若 a≤-2,则 f(x)=x2-2ax+3 在(-2,2)内是增函数; 若-2≤a≤2,则 f(x)=x2-2ax+3 在(-2,a)内为减函数,在(a,2)内为增函数; 若 a≥2,则 f(x)=x2-2ax+3 在(-2,2)内为减函数。 四、课堂练习 课后练习第 1、第 2、第 5 题。 五、课堂小结 本节课主要学习了函数单调性的概念以及判断函数在某个区间上的单调性的方法. 六、课外作业 习题 2.3:第 1 题、第 2 题、第 4 题、第 8 题。

七、教学总结
在本课的教学中,教师立足于所创设的情境,通过学生自主探索、合作交流,亲身经历 了提出问题、解决问题、应用反思的过程,学生成为函数单调性的“发现者”和“创造者”, 知识目标、能力目标、情感目标均得到了较好的落实。 创设数学情境是这种教学模式的基础环节,教师必须对学生的身心特点、知识水平、教学内 容、教学目标等因素进行综合考虑,对可用的情境进行比较,选择具有较好的教育功能的情

境。这种教学模式主张以问题为连线组织教学活动,以学生作为提出问题的主体,因此,如 何引导学生提出问题是教学成败的关键。教学实验表明,学生能否提出数学问题,不仅受其 数学基础、生活经历、学习方式等自身因素的影响,还受其所处的环境、教师对提问的态度 等外在因素的制约。因此,教师不仅要注重创设适宜的数学情境,而且要真正转变对学生提 问的态度,提高引导水平,一方面要鼓励学生大胆地提出问题,另一方面要妥善处理学生提 出的问题。教师还要积极引导学生对所提的问题进行分析、整理,筛选出有价值的问题,注 意启发学生揭示问题的数学实质,将提问引向深入。


推荐相关:

高中数学教学设计大赛教学案例设计汇编

高中数学教学设计大赛教学案例设计汇编_数学_高中教育_教育专区。高中数学教学大赛教学设计高中数学教学案例设计汇编(下部) 19、正弦定理(2)一、教学内容分析 本节内容...


简约化高中数学课堂教学设计

简约化高中数学课堂教学设计_教学案例/设计_教学研究_教育专区。越来越多的教师喜欢让高中数学课堂教学变得无比繁复, 课堂上花样百出, 学生目不暇 接。当一堂课...


高中数学教学设计大赛获奖作品汇编

函数始终是高中数学教学的主线,对数函数始 终是高中数学的难点。高中新课改的春风,带来了函数教学设计上的 创新,促使我们在学生学习方法上、教学内容的组织上、教学...


高中数学教学设计

高中数学人教 A 版选修 2-2 教学设计 课题 设计人 1.2.2 基本初等函数的导数公式及导数的四则运算 雪域 课型 时间 新授课 2015.12.13 1)知识与技能 ①...


高中数学教学设计模版

教学设计思路: 1、函数及其图像在高中数学中占有重要的位置,如何突破这个 既重要又抽象的内容, 其实质就是将抽象的符号语言与直观的图像语 言有机的结合起来,通过...


人教版高中数学《函数的单调性与最值》全国一等奖教学...

人教版高中数学《函数的单调性与最值》全国一等奖教学设计_数学_高中教育_教育...(1)教学内容的内涵、数学思想方法、核心与教学重点; 本课教学内容出自人教版《...


高中数学教学设计及课件

篇一:高中数学教学设计与教学反思 高中数学教学设计与教学反思 第一章第三节三角函数的诱导公式(一) 一、指导思想与理论依据 数学是一门培养人的思维,发展人的...


高中数学教学设计与教学反思

高中数学教学设计与教学反思第一章第三节 三角函数的诱导公式(一) 一、指导思想与理论依据 数学是一门培养人的思维,发展人的思维的重要学科。因此,在教学中,不仅...


浅谈高中数学如何实施高效课堂教学

浅谈高中数学如何实施高效课堂教学_教学案例/设计_教学研究_教育专区 暂无评价|0人阅读|0次下载|举报文档 浅谈高中数学如何实施高效课堂教学_教学案例/设计_教学研究...


高中数学教学设计

高中数学教学设计。等比数列的前 n 项和 ( 第一课时)一. 教材分析。(1)教材的地位与作用:《等比数列的前 n 项和》选自《普通高中课程标准数学教科书·数学 ...

网站首页 | 网站地图
All rights reserved Powered by 学霸学习网 www.tceic.com
copyright ©right 2010-2021。
文档资料库内容来自网络,如有侵犯请联系客服。zhit325@126.com