tceic.com
简单学习网 让学习变简单
相关标签
当前位置:首页 >> 数学 >>

排列组合概率练习题(含答案)


排列与组合练习题
1.如图,三行三列的方阵中有 9 个数 aij (i ? 1, 2,3; j ? 1, 2,3) ,从中任取三 个数,则至少有两个数位于同行或同列的概率是 (A)

3 7

(B)

4 7

(C)

1 14

(D)

>
13 14

? a11 a12 a13 ? ? ? ? a21 a22 a23 ? ?a a a ? ? 31 32 33 ?

答案:D 解析:若取出 3 个数,任意两个不同行也不同列,则只有 6 种取法;而从 9 个数中任意取 3
3 个的方法是 C9 .所以 1 ?

6 13 ? . 3 C9 14

2.同室四人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送出的贺年卡,则四 张贺年卡不同的分配方式有 (A)6 种 (B)9 种 (C)11 种 (D)13 种 答案:B 解析:设四人分别是甲、乙、丙、丁,他们写的卡片分别为 a, b, c, d ,则甲有三种拿卡片的 方 法 , 甲 可 以 拿 b, c, d 之 一 . 当 甲 拿 b 卡 片 时 , 其 余 三 人 有 三 种 拿 法 , 分 别 为

badc, bcda, bdac .类似地,当甲拿 c 或 d 时,其余三人各有三种拿法.故共有 9 种拿法.
3.在平面直角坐标系中, x 轴正半轴上有 5 个点, y 轴正半轴上有 3 个点,将 x 轴正半轴 上这 5 个点和 y 轴正半轴上这 3 个点连成 15 条线段, 这 15 条线段在第一象限内的交点最多 有 (A)30 个 (B)20 个 (C)35 个 (D)15 个 答案:A 解析: 设想 x 轴上任意两个点和 y 轴上任意两个点可以构成一个四边形, 则这个四边形唯一
2 2 的对角线交点,即在第一象限,适合题意.而这样的四边形共有 C5 ? C3 ? 30 个,于是最

多有 30 个交点. 推广 1: .在平面直角坐标系中, x 轴正半轴上有 m 个点, y 轴正半轴上有 n 个点,将 x 轴 正半轴上这 m 个点和 y 轴正半轴上这 n 个点连成 15 条线段,这 15 条线段在第一象限内的
2 2 交点最多有 Cn 个 ? Cm

变式题:一个圆周上共有 12 个点,由这些点所连的弦最多有__个交点. 答案: C12 4.有 5 本不同的书,其中语文书 2 本,数学书 2 本,物理书 1 本.若将其随机的并排摆放 到书架的同一层上,则同一科目的书都不相邻的概率是 (A)
4

1 5

(B)

2 5

(C)

3 5

(D )

4 5

答案:B
1

解析:由古典概型的概率公式得 P ? 1 ?

2 2 2 3 2 2 2 A2 A2 A3 ? A3 A2 A2 2 ? . 5 5 A5

5.有 3 个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各 个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为 (A)
1 3

(B)

1 2

(C)

2 3

(D)

3 4

答案:A 解析:每个同学参加的情形都有 3 种,故两个同学参加一组的情形有 9 种,而参加同一组的 情形只有 3 种,所求的概率为 p=

3 1 ? . 9 3

6.从 1,2,3,4,5 中任取 2 个不同的数,事件 A=“取到的 2 个数之和为偶数” ,事件 B= “取到的 2 个数均为偶数” ,则 P( B | A) ? A. 答案:B 解析: P( A) ?

1 8

B.

1 4

C.

2 5

D.

1 2

2 1 P( AB) 1 ? . , P ( AB ) ? , P( B | A) ? 5 10 P( A) 4

7.甲、乙两队进行排球决赛.现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两 局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为 A. 答案:D 解析:由题得甲队获得冠军有两种情况,第一局胜或第一局输第二局胜,所以甲队获得冠军 的概率 P ?

1 2

B.

3 5

C.

2 3

D.

3 4

1 1 1 3 ? ? ? .所以选 D. 2 2 2 4

8.如图,用 K、A1、A2 三类不同的元件连成一个系统.当 K 正常工作且 A1、A2 至少有一 个正常工作时,系统正常工作.已知 K、A1、A2 正常工作的概率依次为 0.9、0.8、0.8,则 系统正常工作的概率为

A1 K A2
A.0.960 答案:B
1 ? 0.9 ? 0.8 ? (1 ? 0.8) ? 0.9 ? 0.8 ? 0.8 ? 0.864 ,所以选 B. 解析:系统正常工作概率为 C2

B.0.864

C.0.720

D.0.576

2

9.甲乙两人一起去“2011 西安世园会” ,他们约定,各自独立地从 1 到 6 号景点中任选 4 个进行游览,每个景点参观 1 小时,则最后一小时他们同在一个景点的概率是 (A)

1 36

(B)

1 9

(C)

5 36

(D)

1 6

答案:D
1 1 1 1 1 1 1 1 解析:各自独立地从 1 到 6 号景点中任选 4 个进行游览有 C6 C6C5C5C4C4C3C3 种,且等可 1 1 1 1 1 1 1 能,最后一小时他们同在一个景点有 C6 C5C5C4C4C3C3 种,则最后一小时他们同在一个景
1 1 1 1 1 1 1 C6 C5C5C4C4C3C3 1 ? ,故选 D. 1 1 1 1 1 1 1 1 C6C6C5C5C4C4C3C3 6

点的概率是 p ?

10.在集合 ?1,2,3,4,5? 中任取一个偶数 a 和一个奇数 b 构成以原点为起点的向量

? ? (a , b) .从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形.记所
有作成的平行四边形的个数为 n , 其中面积不超过 则 ...4 的平行四边形的个数为 m , (A)

? ?

m ?( ) n

4 15

(B)

1 3

( C)

2 5

(D)

2 3

答案:B
2 解析:基本事件: 从(2,1),(2,3),(2,5),(4,1),(4,5),(4,3)选取2个,n ? C6 ? 3 ? 5 ? 15 .其

中面积为 2 的平行四边形的个数 (2,3)(4,5);(2,1)(4,3);(2,1)(4,1) ;其中面积为 4 的平行四 边形的为 (2,3)(2,5);(2,1)(2,3) ; m=3+2=5 故

m 5 1 ? ? . n 15 3

11.如图,矩形 ABCD 中,点 E 为边 CD 的中点,若在矩形 ABCD 内部随机取一个点 Q, 则点 Q 取自△ABE 内部的概率等于 A. 答案:C 解析:显然 ?ABE 面积为矩形 ABCD 面积的一半,故选 C. 12.在 ( x ? 4 3 y)20 展开式中,系数为有理数的项共有 答案:6
r 20? r 4 r 4 解析:二项式展开式的通 项公式为 Tr ?1 ? C20 x ( 3y)r ? C20 ( 3)r x 20?r yr (0 ? r ? 20) 要使系

1 4

B.

1 3

C.

1 2

D.

2 3

项.

数为有理数,则 r 必为 4 的倍数,所以 r 可为 0.、4、8、12、16、20 共 6 种,故系数为有 理数的项共有 6 项.
3

13. 集合 M ? {1, 2,3, 4,5,6,7,8,9,10} , 从集合 M 中取出 4 个元素构成集合 P , 并且集合 P 中任意两个元素 x, y 满足 | x ? y |? 2 ,则这样的集合 P 的个数为____. 答案:35 解析:其实就是从 1 到 10 这十个自然数中取出不相邻的四个数,共有多少方法的问题.因
4 此这样的集合 P 共有 C7 ? 35 个.

14.在一个正六边形的六个区域栽种观赏植物,如右图所示,要求同一块中种同一种植物, 相邻的两块种不同的植物,现有 4 种不同的植物可供选择,则有___种栽种方案.

答案:732 解析:共分三类: (1)A、C、E 三块种同一种植物; (2)A、B、C 三块种两种植物(三块 中有两块种相同植物, 而与另一块所种植物不同) ; (3) A、 B、 C 三块种三种不同的植物. 将 三类相加得 732. 15.根据以往统计资料,某地车主购买甲种保险的概率为 0.5 ,购买乙种保险但

不购买甲种保险的概率为 0.3 ,设各车主购买保险相互独立. (I)求该地 1 位车主至少购买甲、乙两种保险中的 1 种的概率; (Ⅱ) X 表示该地的 100 位车主中,甲、乙两种保险都不购买的车主数,求 X 的期 望 E( X ) .
解: (I)设 A 表示事件“购买甲种保险” ,B 表示购买乙种保险.

A ? B ? A ? ( AB) 并且 A 与 A B 是互斥事件,所以
P( A ? B) ? P( A) ? P( AB) ? 0.5 ? 0.3 ? 0.8
答:该地 1 位车主至少购买甲、乙两种保险中的 1 种的概率为 0.8 . (II)由(I)得任意 1 位车主两种保险都不购买的概率为 p ? p( AB) ? 1 ? 0.8 ? 0.2 . 又 X ? B(3,0.2) ,所以 E( X ) ? 20 .所以 X 的期望 E( X ) ? 20 .

4


推荐相关:

排列组合概率练习题(含答案)

排列组合概率练习题(含答案)_环境科学/食品科学_工程科技_专业资料。排列组合概率练习题,非常好的精品资料,完全的word编辑而成的。数学...


数学概率(排列组合)练习题(含答案)

数学概率(排列组合)练习题(含答案)_数学_高中教育_教育专区。数学概率(排列组合)练习题(含答案) 1.学校计划利用周五下午第一、二、三节课举办语文、数学、英语...


高考复习排列组合与概率试题含答案

高考复习排列组合概率试题含答案_高一数学_数学_高中教育_教育专区。一、选择题...所得两数之和等于 7 的概率为(B) ( A) 1 11 (B ) 1 9 (C ) 2 ...


高二数学排列组合概率测试题及答案

高二数学排列组合概率测试题及答案_高二数学_数学_高中教育_教育专区。高二数学排列组合概率测试题及答案成都七中高 2011 级排列组合概率测试题考试时间:120 分钟 命...


排列组合概率题目精选(附答案)

排列组合概率题目精选(附答案)_数学_高中教育_教育专区。1、函数 f:|1,2,3| ? |1,2,3|满足 f(f(x))= f(x),则这样的函数个数共有 (A)1 个 (B...


《排列组合与概率统计基础》试题及答案解析

排列组合概率统计基础》试题答案解析_高考_高中教育_教育专区。高中数学《排列组合概率统计基础》试题答案解析 《排列组合概率统计基础》试题答案解析(...


高中数学排列组合二项式定理与概率检测试题及答案

排列组合二项式定理与概率训练题一、选择题(本大题共 12 小题,每小题 5 分,共 60 分) 1.3 名老师随机从 3 男 3 女共 6 人中各带 2 名学生进行实验...


专题07 排列组合、二项式定理与概率-2016年高考+联考模拟理数试题分项版解析(原卷版) Word版缺答案

专题07 排列组合、二项式定理与概率-2016年高考+联考模拟理数试题分项版解析(原卷版) Word版缺答案_高考_高中教育_教育专区。第一部分 2016 高考试题 排列组合、...


排列组合经典练习答案

排列组合经典练习答案_数学_高中教育_教育专区。排列与组合习题 1.6 个人分乘两...(每组 4 个队) ,则 3 个强队恰 好被分在同一组的概率为( ) A. 1 ...

网站首页 | 网站地图
All rights reserved Powered by 简单学习网 www.tceic.com
copyright ©right 2010-2021。
文档资料库内容来自网络,如有侵犯请联系客服。zhit325@126.com