tceic.com
学霸学习网 这下你爽了
相关标签
当前位置:首页 >> 从业资格考试 >>

高一数学柱锥台和球体的体积


柱、锥、台和球体的体积
背景知识激趣 祖暅原理
祖暅是祖冲之的儿子,生卒年代不详,是一位博学多才的数学家. 唐代王孝通称他 为祖暅,阮元《畴人传》中称他为祖暅之,另字景铄。他继承家学,主要工作是修补编 辑他父亲的著述《缀述》,虽然他曾历官员外郎、散骑常侍。祖暅在数学上的主要成就, 就是推算球的体积公式. 在方法上根据他父亲提出的原理:“缘幂势既同,则积不容异”。 其中幂指截面积,势指高,这一原理也可叙述为:两个等高的立体,若平行于底的截面 积相等,则体积相等。这个原理,西方叫卡瓦列里原理,由卡氏于公元 1635 年在《连 续不可分量几何》里提出,但这比祖冲之父子晚 1100 多年。因而我们将此原理称为“祖 氏原理”或“祖暅原理”更为恰当。 课程学习目标 [课程目标] 目标重点:棱柱、棱锥、和棱台的体积公式的推导方法以及祖暅原理。 目标难点:祖暅原理的理解及棱柱、棱锥、棱台和球的体积公式的应用。 [学法关键] 深刻地理解祖暅原理, 并搞清楚怎样以长方体的体积公式和祖暅原理为基础推出几 种常见几何体的体积公式,按照知识形成的过程来理解,认识柱、锥、台和球的体积公 式的推导.

研习教材重难点 研习点 1. 祖暅原理 祖暅原理:幂势既同,则积不容异. 也就是说,夹在两个平行平面间的两个几何体,被平行于这两个平面的任意平面所截, 如果截得的两个截面的面积总相等,那么这两个几何体的体积相等. 如何理解祖暅原理? 祖暅原理是推导柱、锥、台和球体积公式的基础和纽带,原理中含有三个条件,条 件一是两个几何体夹在两个平行平面之间,条件二是用平行于两个平行平面的任何一平 面可截得两个平面,条件三是两个截面的面积总相等,这三个条件缺一不可,否则结论 不成立. 这个原理是非常浅显易懂的,例如取一摞纸张堆放在桌面上,将它们如下图的右图 那样改变一下形状,这时高度没有改变,每页纸的面积也没有改变,因而这摞纸的体积 与变形前相等.

研习点 2 棱柱和圆柱的体积

1.柱体(棱柱和圆柱)的体积等于它的底面积 S 和高 h 的积. 即 V 柱体=S· h. 设有一个棱柱、一个圆柱和一个长方体,它们的底面积相等,都等于 S,高都等于 h,它们的下底面都在同一平面上. 因为它们的上底面和下底面平行,并且高相等,所以 它们的上底面都在和下底面平行的同一个平面内.用与底面平行的任意平面去截它们时, 所得的截面面积都等于 S,根据祖暅原理,它们的体积相等. 由于长方体的体积等于它 的底面积和高的乘积,于是我们得到柱体的体积计算公式是 V 柱体=S· h.. 2 底面半径是 R,高为的圆柱体的体积的计算公式是 S 圆柱=πR h. 研习点 3. 棱锥和圆锥的体积
1 1. 如果一个锥体(棱锥、圆锥)的底面积是 S,高是 h,那么它的体积是 V 锥体= Sh. 3 1 2 2. 如果圆锥的底面半径是 R,高是,则它的体积是 V 圆锥= πR h. 3

如何理解锥体体积的推导? 在推导棱锥的体积公式时,是将三棱柱分为三个三棱锥,这三个三棱锥变换它们的 底面和顶点,可以得到它们两两之间等底面积、等高,因此它们的体积相等,都等于三 棱柱体积的三分之一,在这个过程中一是运用了等积转换的方法,二是运用了割补法, 这些方法在今后解题时要灵活运用.

研习点 4 棱台和圆台的体积 1 1. V 台体= ( S ? SS ' ? S ')h ;其中 S、S’分别为台体上、下底面面积,h 为台体的高. 3 1 2.V 圆台= π(r2+Rr+R2)h,其中 r、R 分别为圆台的上、下底面的半径,高为 h. 3 研习点 5 球的体积 4 V 球= ? R 3 ,其中 R 为球的半径. 3 柱体、锥体、台体的体积公式间的关系

研习点 6 多面体体积的求法 多面体体积的常用求法有: 1.直接法;2.换底法;3.分割法;4.补体法.

探究解题新思路
基础拓展型 题型 1. 考查柱体的体积 例 1. 三棱柱 ABC-A1B1C1 中,若 E、F, 分别为 AB、AC 的中点,平面 EBC1F, 将三棱 柱分成体积为 V1、V2 的两部分,那么 V1:V2= . 【探究】V1 对应的几何体 AEF-A 1B 1C 1 是一个棱台,一个底 面的面积与棱柱的底面积相等, 另一个底面的面积等于棱柱底 1 面的 ,V2 对应的是一个不规则的几何体,显然 V2 的体积无 4 法直接表示,可以考虑间接的办法,用三棱柱的体积减去 V1 来表示. 【研析】设三棱柱的高为 h,底面的面积为 S,体积为 V,则 V=V1+V2=Sh, ∵E,F 分别为 AB、AC 的中点, 1 1 1 1 7 ∴ S△AEF= S. V1= ( S ? S ? S ? S ) ? h ? Sh , 4 3 4 4 12 5 V2=Sh-V1= Sh , ∴ V1:V2=7:5. 12

例 2. 已知等边圆柱(轴截面是正方形的圆柱)的全面积为 S,求 其内接正四棱柱的体积。 【探究】 要解决此题首先要画出合适的轴截面图来帮助我们思 考,要求内接正四棱柱的体积,只需求出等边圆柱的底面圆半径 r,根据已知条件可以用 S 表示它。 【研析】如图,设等边圆柱的底面半径为 r,则高 h=2r,

∴ 内接正四棱柱的底面边长 a=2rsin45° = 2r

即圆柱的内接正四棱柱的体积为

6? S S 9? 2

【反思· 领悟】 本题是正四棱柱与圆柱的相接问题,解决这类问题的关键是找到相接几何体之间的联 系,如本例中正四棱柱的底面对角线的长与圆柱的底面直径相等,正四棱柱的高与圆

柱的母线长相等,通过这些关系可以实现已知条件的相互转化。 1.一个平行六面体的各个面都是全等的菱形,菱形的锐角为 60° ,边长为 a,求它的体 6 3 积. a 6

题型 2. 考查锥体的体积 例 3. 如图所示,三棱锥的顶点为 P,PA、PB、PC 为三条侧棱, 且 PA、PB、PC 两两互相垂直,又 PA=2,PB=3,PC=4. 求三棱 锥 P-ABC 的体积 V. 解: 【反思· 领悟】 三棱锥又称为四面体, 它的每一个面都可当作底面来处理, 这一方法叫做体积转移法 (或 等积法),随着知识的增多,它的应用越来越广泛,请同学们认识这一方法.

例 4. 如图 1,△ABC 的三边长分别是 AC=3,BC=4, AB=5,以 AB 所在直线为轴,将此三角形旋转一周, 求所得旋转体的表面积和体积. 【探究】 . 一直角三角形绕它的直角边所在直线旋转一 周形成的曲面所围成的几何体叫做圆锥,但绕它的斜 边所在直线旋转就不再是圆锥,这时我们可以自三角 形的直角顶点 C 向斜边引垂线 CD,垂足为 D,线段 CD 将这个直角三角形分成两个直角三角形,AD、BD 分别是两个直角三角形的一条直 角边,这样线段 CD 旋转一周形成的面将整个旋转体分成了底面重合的两个圆锥. 【研析】. 如图 2 所示,所得的旋转体是两个底面重合的圆锥,高的和为 AB=5,

【反思· 领悟】 求组合体的面积或体积,首先要弄清它是由哪些基本几何体构成,再通过轴截面分 析和解决问题;若以 AC 或 BC 边为轴旋转一周会形成怎样的几何体?它们的体积分别 是多少?试比较这三个旋转体的体积的大小.

2.如图所示,已知三棱锥 P-ABC 中,PA=a,PB=b,PC=c,侧棱 PA、 PB、PC 上各有点 A1,B1,C1,且 PA1=a1,PB1=b1,PC1=c1,求证:

VP ? ABC abc ? VP ? A1B1C1 a1b1c1

小结. 对于圆锥和棱锥的体积的计算或证明问题,在求解时关键是分析清楚题目中的已 知条件是什么, 再结合体积的计算公式看一下, 还缺少哪些量, 然后设法把它们求出来, 则问题就可以解决了。 题型 3. 考查台体的体积 例 5. 三棱台 ABC-A1B1C1 中,AB:A1B1=1:2,则三棱 锥 A1-ABC, B-A1B1C, C-A1B1C1 的体积之比为 ( ) (A)1:1:1 (B)1:1:2 (C)1:2:4 (D)1:4:4 【探究】. 如图,三棱锥 A1-ABC 的顶点看作 A1,底面 看作 ABC;三棱锥 C-A1B1C1 的顶点看作 C,底面看作 A1B1C1;三棱锥 B-A1B1C 可看作棱台减去两个三棱锥 A1-ABC 和 C-A1B1C1 后剩余的几何体,分别求几何体 的体积,然后相比即可’ 【研析】. 设棱台的高为 h,S△ABC=S,则 S? A1B1C1 ? 4S ,

体积之比为 1:2:4. 例 6.半径为 R 的球内切于圆台,母线与底面成 α 角,求圆台 的侧面积和体积’ 【探究】. 此题告诉了圆台的内切球的半径,母线与底面所成 的角,要求圆台的侧面积和体积,则要求出圆台的高和上、下 底面半径. 【研析】如图为圆台的轴截面 设 A1O1=r1,AO2=r2,AA1=l,⊙O 内切于等腰梯形 AA 1 B 1 B, O1,O2,C 为切点,OO1=2r,r1+r2=l,∠A1AB=α,作 A1D⊥AB 于 D, 2r 则l ? ,又知 A1O,AO 分别平分∠A1,∠A,∴ ∠A1OA=90° , sin ? ∵ CO⊥AA1,∴R2=r1r2, 2 2 4? R 故 S 圆台侧=π(r1+r2)· l=πl = 2 sin ?

【反思· 领悟】 三棱柱、三棱台可以分割成三个三棱锥,分割后可由锥体的体积 求柱体和台体的体积关系,在立体几何中,割补法是重要的方法 3. 如图,在长方体 ABCD-A’B’C’D’中,用截面截下一个三棱锥 C-A’DD’,求棱锥 C-A’DD’的体积与剩余部分的体积之比。 答案:1:5 ? 4. 圆台的母线长为 6,它和下底的夹角为 ,且圆台轴截面的两 3 条对角线互相垂直,则它的体积为( C ) 45 3 45 3 (A) 10 3? (B) (C) (D) 15 3? ? ? 4 2

题型 4.考查球的体积 例 7. 正三棱锥 P-ABC 的侧棱长为 l,两侧棱的夹角为 α,求它的外接球的体积。 【探究】要求球的体积,根据球的体积计算公式可知,求出球的半径,是解决问题的关 键。 【研析】如图,作 PD⊥底面 ABC 于 D,则 D 为正△ABC 的 中心.

例 8. 球与圆台的上、下底面及侧面都相切,且球面面积与圆台的侧面积之比为 3:4, 则球的体积与圆台的体积之比为( ) (A)6:13 (B)5:14 (C)3:4 (D)7:15 【探究】要求球的体积与圆台的体积比,关键是找出球的 半径与圆台的上、下底面半径间的关系。 【研析】如图,作圆台的轴截面等腰梯形 ABCD,球的大 圆 O 内切于梯形 ABCD, 设球的半径为 R,圆台的上、下底面半径分别为 r1、r2, 由平面几何知识知, 圆台的高为 O1O2=2R, 母线长为 r1+r2, ∵∠AOB=90° , OE⊥AB(E 为切点), 2 2 ∴ R =OE =AE· BE=r1· r2 ,

【反思· 领悟】 解决与球有关的接切问题时,一般作一个适当的截面,将问题转化为平面问题解决,这 类截面通常指圆锥的轴截面、球的大圆、多面体的对角面等,在这个截面中应包括每个 几何体的主要元素,且这个截面必须能反映出几何体之间的主要位置关系和数量关系。 5. 正四面体内切球与外接球的体积的比为( C (A)1:3 (B)1:9 (C)1:27 ) (D)1:81

小结. 简单几何体的切接问题,包括简单几何体的内外切和内外接,在解决这类问题时 要准确地画出它们的图形,一般要通过一些特殊点,如切点,某些顶点,或一些特殊的 线,如轴线或高线等,作几何体的截面,在截面上运用平面几何的知识,研究有关元素 的位置关系和数量关系,进而把问题解决。

【教考动向· 演练】 1.设六正棱锥的底面边长为 1,侧棱长为 5 ,那么它的体积为( (A)6 3 (B) 3 (C)2 3 (D)2

B



1 ,则它的体积是原来的( B ) 2 1 1 1 1 (A) (B) (C) (D) 5 8 16 32 3.直三棱柱 ABC-A1B1C1 的体积为 V,已知点 P、Q 分别为 AA1、CC1 上的点,而且满 足 AP=C1Q,则四棱锥 B-APQC 的体积是( B ) 1 2 1 1 (A) V (B) V (C) V (D) V 3 2 4 3 4.把一个大金属球表面涂漆,需油漆 2.4kg,若把这个金属球熔化,制成 64 个半径相 等的小金属球(设损耗为零),将这些小金属球表面涂漆,需用油漆 9.6 kg. 5.已知圆锥的母线长为 8,底面周长为 6π,则它的体积是 . 3 5? 5

2.正棱锥的高和底面边长都缩小原来的

6.一个正方体的所有顶点都在球面上,若这个球的体积是 V,则这个正方体的体积是 2 3 . V 3?

综合创新型
题型 1.创新应用题 例 5. 如图,在四棱锥 P-ABCD 中,底面 ABCD 是正方形,边长 AB=a,且 PD=a, PA=PC= 2 a,若在这个四棱锥内放一个球,求球的最大半 径. 【探究】要使放入的球的半径最大,当且仅当球与四棱锥的 各个面都相切时. 【研析】设放入的球的半径为 R,球心为 S, 当且仅当球与四棱锥的各个面都相切时,球的半径最大,连 结 SA、SB、SC、SD、SP,则把此四棱锥分割成四个三棱锥 和一个四棱锥,这些小棱锥的高均为 R,底面为原四棱锥的 侧面或底面.由体积关系,得

1 故所放入的球的最大半径为 (2 ? 2)a . 2 【反思· 领悟】 本题是一道常见的平面几何题在立体几何中的推广 $ 本题在求解的过程中用到了分割 法求四棱锥的体积,这种分割法在求一些较为复杂的几何体的体积时很有效

6. 一个圆锥的材料顶角为 α,母线长是 l,要把它车成一个最大的等边圆柱形零件,求 这零件的体积。

题型 2 开放探究题 例 6 一球的外切圆台上、下底面半径分别为 r、R,则球面的半径 为 . 【探究】此题是一道球与圆台相切的组合体问题,要求内切球的 半径,注意利用好轴截面进行计算. 【研析】如图所示,圆台及内切球的轴截面 ABCD,O1、O2、O 分别为上、下底面中心及球心,设球半径为 x,

【反思· 领悟】 关于此类由几种图形组成的组合体的计算问题,解决的关键是搞清楚组合体是由哪几种 基本几何体构成的,再通过轴截面来分析和解决问题

7.半径为 R 的三个小球两两外切放在桌面上,与这三个小球都外切的第四个小球也与 1 桌面相切,则此小球的半径为 R . 3 8. 矩形 ABCD 的一边 DC 被 K 分成中外比 (KC>KD) , 求证△ABC, △ACK 和△AKD 分 别以 BC 为轴旋转一周所得旋转体的体积相等. 教考动向· 演练 7. 一个圆柱形的玻璃瓶的内半径为 3cm,瓶里所装的水深为 8cm,将一个钢球完全浸入 水中,瓶中的水的高度上升到 8.5cm,求钢球的半径. 1.5cm 8. 若球的大圆面积扩大为原来的 3 倍,则它的体积扩大为原来的( D ) (A)3 倍 (B)9 倍 (C)27 倍 (D)3 3 倍

9. 圆台的上、下底面半径和高的比为 1:4:4,母线长 10,则圆台的体积为( B ) 544 ? (A)672π (B)224π (C)100π (D) 3 10.圆锥过高的中点且与底面平行的截面把圆锥分成两部分的体积之比是( C ) (A)1:1 (B)1:6 (C)1:7 (D)1:8 11 . 圆柱的侧面展开图是边长为 6π 和 4π 的矩形,则圆柱的体积是 36π2 或 2 24π 。 12. 一个正三棱锥的底面边长为 6,侧棱长为 15 ,那么这个三棱锥的体积是 9 .

1.如图,在多面体 ABCDEF 中,已知 ABCD 是边长为 1 的正 方形,且△ADE、△ BCF 均为正三角形,EF//AB,EF=2AB, 则该多面体的体积为( A ) 4 3 3 2 (A) (B) (C ) (D) 3 2 3 3 2. 已知高为 3 的直棱柱 ABC-A’B’C’的底面是边长为 1 的正三角形(如 图所示),则三棱锥 B’-ABC 的体积为( D ) 1 1 3 3 (A) (B) (C) (D) 4 2 6 4 , 3. 如图 1,在体积为 1 的三棱锥 A-BCD 的侧棱 AB、AC、AD 上 分别取点 E、F,G,使 AE:EB=AF:FC=AG:GD=2:1,记 O 为三平面 BCG、CDE、DBF 的交点,则三棱锥 O-BCD 的体积等 于( C ) 1 1 1 1 (A) (B) (C) (D) 9 8 7 4 4.如图 2,已知底面半径为 r 的圆柱被一个平面所截,剩余部分 母线长的最大值为 a,最小值为 b,那么圆柱被截后剩下部分的体 1 ? ( a ? b) r 2 积是 . 2


推荐相关:

第一章1.1.7柱、锥、台和球的体积教案教师版

第一章1.1.7柱、锥、台和球的体积教案教师版_高一数学_数学_高中教育_教育专区。第一章1.1.7柱、锥、台和球的体积教案教师版1...


《柱、锥、台和球的体积》教案

《柱、锥、台和球的体积》教案_高一数学_数学_高中教育_教育专区。《柱、锥、台和球的体积》教案 教学目标 1、了解柱、锥、台的体积的计算方法。 2、了解...


柱、锥、台及球的表面积和体积公式

、台及球的表面积和体积公式_数学_自然科学_专业资料。昆明行知中学高一数学空间几何体模块导学案 编制人:杨广 班级: 小组: 姓名: 审核人: 教师评价: ...


高一柱、锥、台、球的表面积与体积

年级 内容标题 编稿老师 高一 学科 数学 柱、锥、台、球的表面积与体积 刘震 一、学习目标了解空间几何体的表面积和体积的计算公式,能够计算基本几何体及它们的...


柱、锥、台和球的体积 二

柱、锥、台和球的体积 二_数学_高中教育_教育专区。必修2专题 柱、锥、台和球的体积 二教学目标:了解球的体积的计算方法 教学重点:了解球的体积的计算方法 ...


1.1.7 柱、锥、台和球的体积

2016 级数学学科问学案 a1.1.7 台和球的体积课型:新授课 【课标要求】 通过以长方体的体积公式和祖暅原理为基础推导几种几何体的体积公式,了解掌握...


柱、锥、台和球的体积(2)

柱、锥、台和球的体积(2)_数学_高中教育_教育专区。必修2专题 柱、锥、台和球的体积(2) 教学目标:了解球的体积的计算方法 教学重点:了解球的体积的计算方法...


高中数学必修二 柱、锥、台、球的表面积和体积

高中数学必修二 、台、球的表面积和体积_高二数学_数学_高中教育_教育专区...两个球的表面积之比是 1:16,这两个球的体积之比为( ) A.1:32 B.1:...


第一章1.1.7柱、锥、台和球的体积教案学生版

第一章1.1.7柱、锥、台和球的体积教案学生版_高一数学_数学_高中教育_教育专区。第一章1.1.7柱、锥、台和球的体积教案学生版1...


7.2柱、锥、台的体积及球体的侧面和体积17

7.2、台的体积球体的侧面体积17_数学_高中教育_教育专区。石泉中学课时教案科目:数学 日单元(章节)课题 本节课题 教师: 魏吉星简单几何体的再认识 ...

网站首页 | 网站地图
All rights reserved Powered by 学霸学习网 www.tceic.com
copyright ©right 2010-2021。
文档资料库内容来自网络,如有侵犯请联系客服。zhit325@126.com