tceic.com
简单学习网 让学习变简单
相关标签
当前位置:首页 >> 数学 >>

2016届高考数学大一轮复习 第5章 第3节 等比数列及其前n项和课时提升练 文 新人教版


课时提升练(二十八) 等比数列及其前 n 项和
一、选择题 1.(2014·重庆高考)对任意等比数列{an},下列说法一定正确的是( A.a1,a3,a9 成等比数列 B.a2,a3,a6 成等比数列 C.a2,a4,a8 成等比数列 D.a3,a6,a9 成等比数列 【解析】 设等比数列的公比为 q,因为 = =q ,即 a6=a3a9,所以 a3,a6,a9 成等

比数列. 故选 D. 【答案】 D 2.(2013·江西高考)等比数列 x,3x+3,6x+6,?的第四项等于 ( A.-24 B.0
2

)

a6 a9 a3 a6

3

2

)

C.12
2

D.24

【解析】 由题意知(3x+3) =x(6x+6),即 x +4x+3=0,解得 x=-3 或 x=-1(舍 去),所以等比数列的前 3 项是-3,-6,-12,则第四项为-24. 【答案】 A 3.已知数列{an},则“an,an+1,an+2(n∈N )成等比数列”是“an+1=anan+2”的( A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 【解析】 n∈N 时,an,an+1,an+2 成等比数列,则 an+1=anan+2,反之,则不一定成立, 举反例.如数列为 1,0,0,0,?,应选 A. 【答案】 A 4.在等比数列中,已知 a1a8a15=243,则 A.3 C.27 【解析】 设数列{an}的公比为 q,∵a1·a15=a8, ∴a1a8a15=a8=243,∴a8=3.∴
3 5 3 a3 a3 9 8q 2 = 3=a8=9. a11 a8q 2 3 * 2 * 2

)

a3 9 的值为( a11

) B.9 D.81

1

【答案】 B 5.设 Sn 为等比数列{an}的前 n 项和,已知 3S3=a4-2,3S2=a3-2,则公比 q=( A.3 C.5
? ?3S3=a4-2, 【解析】 ∵? ? ?3S2=a3-2,

)

B.4 D.6 得 3a3=a4-a3,即 4a3=a4,

∴q= =4. 【答案】 B 6.等比数列{an}的前 n 项和为 Sn,若 a1+a2+a3+a4=1,a5+a6+a7+a8=2,Sn=15, 则项数 n 为( A.12 C.15 【解析】 ∵a5+a6+a7+a8=(a1+a2+a3+a4)q . ∴q =2,又∵S4= 又∵Sn=15,即 ∴n=16. 【答案】 D 二、填空题 7.(2014·江苏高考)在各项均为正数的等比数列{an}中,若 a2=1,a8=a6+2a4,则 a6 的值是________. 【解析】 因为 a8=a2q ,a6=a2q ,a4=a2q ,所以由 a8=a6+2a4 得 a2q =a2q +2a2q , 消去 a2q ,得到关于 q 的一元二次方程(q ) -q -2=0,解得 q =2,a6=a2q =1×2 =4. 【答案】 4 8.在△ABC 中,sin A,sin B,sin C 依次成等比数列,则 B 的取值范围是________. 【解析】 因为 sin A,sin B,sin C 依次成等比数数列,所以 sin Asin C=sin B, 即 ac=b ,所以 cos B=
2 2 2 2 2 2 2 2 4 2 6 4 2 6 4 2 4 4

a4 a3

) B.14 D.16

a1?1-q4? =1,∴a1=q-1, 1-q

a1?1-qn? n 4 =15,∴q =16,而 q =2, 1-q

a2+c2-b2 a2+c2-ac a2+c2 1 a2+c2 1 2ac = = - ,所以 cos B= - ≥ - 2ac 2ac 2ac 2 2ac 2 2ac

1 1 π ? π? = ,所以 0<B≤ ,即 B 的取值范围是?0, ?. 3? 2 2 3 ?

? π? 【答案】 ?0, ? 3 ? ?
*

9.已知数列{xn}满足 lg xn+1=1+lg xn(n∈N ),且 x1+x2+x3+?+x100=1,则 lg(x101 +x102+?+x200)=________.
2

【解析】 由 lg xn+1=1+lg xn(n∈N ), 得 lg xn+1-lg xn=1,∴

*

xn+1 =10, xn
100

∴数列{xn}是公比为 10 的等比数列,∴xn+100=xn·10 , ∴x101+x102+?+x200=10 (x1+x2+x3+?+x100)=10 , ∴lg(x101+x102+?+x200)=lg 10 =100. 【答案】 100 三、解答题 10.设数列{an}的前 n 项和为 Sn,a1=1,且数列{Sn}是以 2 为公比的等比数列. (1)求数列{an}的通项公式; (2)求 a1+a3+?+a2n+1. 【解】 (1)∵S1=a1=1,且数列{sn}是以 2 为公比的等比数列. ∴Sn=2
n-1
100 100 100

当 n≥2 时,an=Sn-Sn-1=2
?1,n=1, ? ∴an=? n-2 ?2 ,n≥2. ?

n-2

(2-1)=2

n-2

.

(2)由(1)知,a3,a5,?,a2n+1 是以 2 为首项,4 为公比的等比数列. 2?1-4 ? 2?4 -1? ∴a3+a5+?+a2n+1= = 1-4 3 2?4 -1? 2 +1 ∴a1+a3+a5+?+a2n+1=1+ = . 3 3 11.已知数列{an}满足:a1=1,a2=a(a>0),数列{bn}满足 bn=anan+1(n∈N ). (1)若{an}是等比数列,求{bn}的前 n 项和; (2)当{bn}是公比为 a-1 的等比数列时,{an}能否为等比数列?若能,求出 a 的值;若 不能,请说明理由. 【解】 (1)∵{an}是等比数列,a1=1,a2=a(a>0), ∴q=a,从而 an=a
n-1
*

n

n

n

2n+1

, ,
2

所以 bn=an·an+1=a

2n-1

∴{bn}是首项为 a,公比为 a 的等比数列, 当 a=1 时,Sn=n, 当 a≠1 时,Sn=

a?1-a2n? a2n+1-a = 2 . 2 1-a a -1

(2)数列{an}不能是等比数列. ∵bn=anan+1,∴

bn+1 an+2 = , bn an

3

依题设

an+2 =a-1,则 a3=a1(a-1)=a-1. an
2

假设{an}是等比数列,则 a2=a1a3, ∴a =1×(a-1),但方程无实根. 从而数列{an}不能为等比数列. 12.(2014·南京模拟)已知数列{an}中,a1=1,a2=2,且 an+1=(1+q)an-qan-1(n≥2,
2

q≠0).
(1)设 bn=an+1-an(n∈N ),证明:{bn} 是等比数列; (2)求数列{an}的通项公式; (3)若 a3 是 a6 与 a9 的等差中项,求 q 的值,并证明:对任意的 n∈N ,an 是 an+3 与 an+6 的等差中项. 【解】 (1)证明:由题设 an+1=(1+q)an-qan-1(n≥2), 得 an+1-an=q(an-an-1),即 bn=qbn-1,n≥2. 由 b1=a2-a1=1,q≠0, 所以{bn}是首项为 1,公比为 q 的等比数列. (2)由(1)得,a2-a1=1,a3-a2=q,?,an-an-1=q 将以上各式相加,得 an-a1=1+q+?+q 即 an=a1+1+q+?+q
n-2 n-2 n-2
* *

(n≥2),

(n≥2),

(n≥2).
n-1

1-q ? ?1+ , 1-q 所以当 n≥2 时,an=? ? ?n, q=1. 上式对 n=1 显然成立.

q≠1,

(3)由(2)得,当 q=1 时,显然 a3 不是 a6 与 a9 的等差中项,故 q≠1.由 a3-a6=a9-a3 可得 q -q =q -q , 由 q≠0 得 q -1=1-q ,① 整理得(q ) +q -2=0,解得 q =-2. 3 于是 q=- 2. 另一方面,an-an+3=
3 2 3 3 3 6 5 2 2 8

qn+2-qn-1 qn-1 3 = (q -1), 1-q 1-q

qn-1-qn+5 qn-1 6 an+6-an= = (1-q ). 1-q 1-q
由①可得 an-an+3=an+6-an, 所以对任意的 n∈N ,an 是 an+3 与 an+6 的等差中项.
*

4


推荐相关:

2016届高考数学大一轮复习 第5章 第4节 数列求和课时提...

2016届高考数学大一轮复习 第5章 第4节 数列求和课时提升练 新人教版_数学_高中教育_教育专区。课时提升练(二十九) 一、选择题 1.数列{1+2 A.1+2 n...


2016届高考数学大一轮复习 第5章 第1节 数列的概念及简...

2016届高考数学大一轮复习 第5章 第1节 数列的概念及简单表示法课时提升练 新人教版_数学_高中教育_教育专区。课时提升练(二十六) 一、选择题 数列的概念...


...第五章 第三节 等比数列及其前n项和课时提升作业 理...

【全程复习方略】山东专用)2014版高考数学 第五章 第三节 等比数列及其前n项和课时提升作业 理 新人教A版_数学_高中教育_教育专区。【全程复习方略】 (山东专用...


...总复习课时演练 第6章 第3节 等比数列及其前n项和

2016届高考数学(理)(人教A版)总复习课时演练 第6章 第3节 等比数列及其前n项和_高三数学_数学_高中教育_教育专区。2016届高考数学(理)(人教A版)总复习课时...


2016届高考数学大一轮复习 第7章 第3节 空间点、直线、...

2016届高考数学大一轮复习 第7章 第3节 空间点、直线、平面之间的位置关系课时提升练 新人教版_数学_高中教育_教育专区。课时提升练(三十七) 一、选择题 ...


2016届高考数学大一轮复习 第6章 第3节 二元一次不等式...

2016届高考数学大一轮复习 第6章 第3节 二元一次不等式(组)与简单的线性规划问题课时提升练 新人教版_数学_高中教育_教育专区。课时提升练(三十三) 一、...


2016届高考数学大一轮复习 第3章 第3节 三角函数的图象...

2016届高考数学大一轮复习 第3章 第3节 三角函数的图象与性质课时提升练 新人教版_数学_高中教育_教育专区。课时提升练(十八) 一、选择题 三角函数的图象...


2016届高考数学大一轮复习 第6章 第4节 基本不等式课时...

2016届高考数学大一轮复习 第6章 第4节 基本不等式课时提升练 新人教版_...已知各项为正数的等比数列{an}中,a4 与 a14 的等比中项为 2 2,则 2a7+...


2016届高考数学大一轮复习 第1章 第2节 命题及其关系、...

2016届高考数学大一轮复习 第1章 第2节 命题及其...充分条件与必要条件课时提升练 新人教版_数学_...“若 b ≠ac,则 a,b,c 不成等比数列” 【...


2016届高考数学大一轮复习 第3章 第5节 两角和与差的正...

2016届高考数学大一轮复习 第3第5节 两角和与差的正弦、余弦和正切公式课时提升练 新人教版_数学_高中教育_教育专区。课时提升练(二十) 一、选择题 1...

网站首页 | 网站地图
All rights reserved Powered by 简单学习网 www.tceic.com
copyright ©right 2010-2021。
文档资料库内容来自网络,如有侵犯请联系客服。zhit325@126.com