tceic.com
简单学习网 让学习变简单
当前位置:首页 >> 数学 >>

指数与对数函数经典大题


他山之石可以攻玉

学海无涯扬帆起航

指、对数函数典型题
1. 若 f(x)=x2-x+b,且 f(log2a)=b,log2[f(a) ]=2(a≠1). (1)求 f(log2x)的最小值及对应的 x 值; (2)x 取何值时,f(log2x)>f(1)且 log2[f(x) ]<f(1)

2

>
要使函数 y=1+2x+4xa 在 x∈(-∞,1)上 y>0 恒成立,求 a 的取值范围.

3. 求函数 y=2lg(x-2)-lg(x-3)的最小值.

4. 已知函数 f(x)=3x+k(k 为常数) ,A(-2k,2)是函数 y= f -1 (1)求实数 k 的值及函数 f (x)的解析式; (2)将 y= f
-1

-1

(x)图象上的点.
-1

(x)的图象按向量 a=(3,0)平移,得到函数 y=g(x)的图象,若 2 f

(x+ m

-3)-g(x)≥1 恒成立,试求实数 m 的取值范围.

5. 函数 y=a2x+2ax-1(a>0,a≠1)在区间[-1,1]上的最大值为 14,求 a 的值。

6. 设函数 f(x)=loga(x-3a) (a>0 , a≠1),当点 P(x,y)是函数 y=f(x)图象上的点时,点 Q(x-2a,-y)是函数 y=g(x)的 图象上的点(1)写出函数 y=g(x)的解析式 (2)若当 x∈[a+2,a+3]时,恒有︱f(x)-g(x)︱≤1,试确定的取值范围。

1? ? a ?? 7. 已知 a>0 , a≠1, f ?loga x ? ? ? 2 ?? x ? ?. x? ? a ? 1 ??
地址:翔和路原种子公司 2 楼 都江堰大道钰城大厦二楼 1-8 第 1 页 共 4 页 电话:13678061593 13438458801

他山之石可以攻玉

学海无涯扬帆起航

(1) 当 f(x)的定义域为(-1,1)时,解关于 m 的不等式 f(1-m)+f(1-m2)<0; (2) 若 f(x)-4 恰在(-∞,2)上取负值,求 a 的值

x?2 (a ? 1) , x ?1 求证: (1)函数 f ( x) 在 (?1, ??) 上为增函数; (2)方程 f ( x) ? 0 没有负数根.

8. 已知函数 f ( x) ? a x ?

9. 已知函数 f ( x) ? loga (a x ?1) ( a ? 0 且 a ? 1 ) .求证: (1)函数 f ( x) 的图象在 y 轴的一侧; (2)函数 f ( x) 图象上任意两点连线的斜率都大于 0 .

10. 设函数 y=a2x-2ax+3,x∈[-1,1].? 1 (1)当 a= 时求函数的值域;? 3 (2)当 a>1 时,划分函数的单调区间.?

11. 求实数 m 的值,使函数 f(x)=logm(x2+1)在[0,2]上的最大值为 3.?

12. 函数 f(x)=log 1 (x2-ax+a)在(-∞, 2 )上单调增,求 a 的取值范围.
2

13. 已知函数 f(x)=log0.1

x ?1 +log0.1(x-1)+log0.1(a-x)(a>1)的最小值为-2,求实数 a 的值.? x ?1

14.当 a>0 时,解不等式:logaxx+logx(ax)2>0.
地址:翔和路原种子公司 2 楼 都江堰大道钰城大厦二楼 1-8 第 2 页 共 4 页 电话:13678061593 13438458801

他山之石可以攻玉

学海无涯扬帆起航

15.是否存在实数 a,使函数 f(x)=loga(ax2-x)在区间[2,4]上单调增.若存在,求出 a 的取值范围,若不 存在,说明理由.

16. 已知 f ( x) ? log a

1 ? mx 是奇函数 (其中 a ? 0, a ? 1) , x ?1 (1)求 m 的值;

(2)讨论 f (x) 的单调性; (3)求 f (x) 的反函数 f
?1

( x) ;

(4)当 f (x) 定义域区间为 (1, a ? 2) 时, f (x) 的值域为 (1,??) ,求 a 的值.

17. 对于函数 f ( x) ? log1 ( x 2 ? 2ax ? 3) ,解答下述问题:
2

(1)若函数的定义域为 R,求实数 a 的取值范围; (2)若函数的值域为 R,求实数 a 的取值范围; (3)若函数在 [?1,??) 内有意义,求实数 a 的取值范围; (4)若函数的定义域为 (??,1) ? (3,??) ,求实数 a 的值; (5)若函数的值域为 (??,?1] ,求实数 a 的值; (6)若函数在 (??,1] 内为增函数,求实数 a 的取值范围.

18. 解答下述问题: 2 (Ⅰ)设集合 A ? {x | 2 log 1 x ? 21 log 8 x ? 3 ? 0} ,
2

若当 x ? A 时,函数 f ( x) ? log 2 求实数 a 的值. (Ⅱ)若函数 f ( x) ? 4
x? 1 2

x x ? log 2 的最大值为 2, a 4 2

? a ? 2x ?

27 在区间[0,2]上的最大值为 9,求实数 a 的值. 2
第 3 页 共 4 页 电话:13678061593 13438458801

地址:翔和路原种子公司 2 楼 都江堰大道钰城大厦二楼 1-8

他山之石可以攻玉
(Ⅲ)设关于 x 的方程 4 x ? 2 x?1 ? b ? 0(b ?R) ,

学海无涯扬帆起航

(1)若方程有实数解,求实数 b 的取值范围; (2)当方程有实数解时,讨论方程实根的个数,并求出方程的解.

19. 设 x, y, z 均为正数,且 3x ? 4 y ? 6 z ,求证: ? ?

1 z

1 x

1 . 2y

x?3 x?3 (1)若 f(x)的定义域为[α ,β ](β >α >0) , ,判断 f(x)在定义域上的增减性,并加以说明; (2)当 0<m<1 时,使 f(x)的值域为[logm[m(β –1)] ,logm[m(α –1)] ]的定义域区间为[α ,β ] (β >α >0)是否存在?请说明理由.

20. 已知函数 f(x)=logm

地址:翔和路原种子公司 2 楼 都江堰大道钰城大厦二楼 1-8

第 4 页 共 4 页

电话:13678061593 13438458801


推荐相关:

指数与对数函数经典大题

指数与对数函数经典大题_数学_高中教育_教育专区。他山之石可以攻玉 学海无涯扬帆起航 指、对数函数典型题 1. 若 f(x)=x2-x+b,且 f(log2a)=b,log2[...


指数函数对数函数专练习题(含答案)

指数函数对数函数专练习题(含答案)_高一数学_数学_高中教育_教育专区。指数函数和对数函数典型习题和知识点梳理。指数函数及其性质 1.指数函数概念 一般地,函数 ...


指数函数_对数函数复习经典题目

指数函数_对数函数复习经典题目_数学_高中教育_教育专区。指数函数与对数函数 一...函数 f(x)=a+log(x+1)在[0,1]上的最大值与最小值之和为 a,则 a ...


带答案对数与对数函数经典例题

高一数学函数的单调性、奇偶性 经典例题透析 类型一、指数与对数式互化及其...9. 证明函数 上是增函数. 思路点拨:此题目的在于让学生熟悉函数单调性证明通...


高一指数函数与对数函数经典基础练习题_及答案

高一指数函数与对数函数经典基础练习题_及答案_数学_高中教育_教育专区。华教教育 指数函数与对数函数一. 【复习目标】 1. 掌握指数函数与对数函数的函数性质及...


高一数学_指数函数、对数函数经典重点测试题

高一数学_指数函数对数函数经典重点测试题_数学_高中教育_教育专区。高一数学指数函数对数函数经典重点测试题一、选择题 x 1、已知集合 M={x|x<3}N={x| ...


指数对数运算经典基础题目题目

指数对数运算经典基础题目题目_高一数学_数学_高中教育_教育专区。指数与对数运算...高一指数对数运算 经典题... 6页 3下载券 高一指数函数与对数函数... 5页 ...


指数函数与对数函数学案与典型习题及答案

指数函数与对数函数学案与典型习题及答案_数学_高中教育_教育专区。指数函数和对数...(x)的最大值; (Ⅲ)试证明:满足上述条件的函数 f(x)对一切实数 x,都有 ...


高考学生指数与对数函数知识点小结及典型例题

高考学生指数与对数函数知识点小结及典型例题_数学_高中教育_教育专区。学而通 ...进行,本题也可以利用对数函数的图像进 行比较。 19、 (2011 四川文)函数 y ...


高中数学 幂函数、指数函数与对数函数(经典练习题)

高中数学 幂函数、指数函数与对数函数(经典练习题)_数学_高中教育_教育专区。高中...(x)的值域. 例 5、如果函数 (a>0,且 a≠1)在[-1,1]上的最大值是 ...

网站首页 | 网站地图
All rights reserved Powered by 简单学习网 www.tceic.com
copyright ©right 2010-2021。
文档资料库内容来自网络,如有侵犯请联系客服。zhit325@126.com