tceic.com
学霸学习网 这下你爽了
赞助商链接
当前位置:首页 >> 数学 >>

高考中集合常考题型的总结


教案标题 学科 适用
数学

集合
高中第 一轮复

适用范
全国

年级





1. 理解和掌握集合的概念、集合间的关系、集合间的关系,能根 据条件灵活选用适当的方法解决集合的问题,有关的一切问

知识 目标

题。 2. 建立集合与其他知识的联系。用代数、几何两种方法研究在 集合在其他知识上的应用问题。 3. 建立集合的思想。

教学目标

能力 目标 情感 态度 价值观

集合的知识在其他知识上的应用,来培养学生应用数学 分析、解决实际问题的能力.

培养学生学习的积极性和主动性,发现问题,善于解决问题, 探究知识,合作交流的意识,体验数学中的美,激发学习兴趣, 从而培养学生勤于动脑和动手的良好品质。

知识点 重难点

集合的概念;集合间的关系;集合间的运算 重点:集合的计算、集合内部的关系以及和其他知识的联系. 难点:根据具体的条件,用集合和其他知识的问题.

学习过程
一、复习预习
考纲要求: 1.理解集合的概念。 2.能在具体的数学环境中,应用集合知识。 3.特别是集合间的运算。 4.灵活应用集合知识与其它知识间的联系,集合是一种方法。

二、知识讲解
1.集合的相关概念 基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用. 集合的表示法:列举法、描述法、图形表示法. 集合元素的特征:确定性、互异性、无序性. 常见的数集:自然数集、整数集、有理数集、实数集 2 集合间的关系 任何一个集合是它本身的子集,记为 A ? A ; 空集是任何集合的子集,记为 ? ? A ; 空集是任何非空集合的真子集;

n 元集的子集个数共有 2 n 个;真子集有 2 n ? 1 个;非空子集有 2 n ? 1 个;非空的真子集有 2 n ? 2 个.
3.集合间的运算

交:A B ? {x | x ? A, 且x ? B} 并:A B ? {x | x ? A或x ? B} 补:C U A ? {x ?U , 且x ? A}
4 主要性质和运算律 (1) 包含关系:

A ? A, ? ? A, A ? U , C U A ? U , A ? B, B ? C ? A ? C; A B ? A, A B ? B; A B ? A, A B ? B.

(2) 等价关系: A ? B ? A (3) 集合的运算律:

B ? A ? A B ? B ? CU A B ? U

交换律: A ? B ? B ? A; A ? B ? B ? A.

新课标第一网

结合律: ( A ? B) ? C ? A ? ( B ? C ); ( A ? B) ? C ? A ? ( B ? C ) 分配律:. A ? ( B ? C ) ? ( A ? B) ? ( A ? C ); A ? ( B ? C ) ? ( A ? B) ? ( A ? C )

三、例题精析

考点一

子集、真子集
个子集

【例题 1】 :集合 {?1,0,1} 共有

【答案】 :8 【解析】 : n 元集的子集个数共有 2 n 个,所以是 8 个。 【例题 2】 :设集合 M ? {x | x ?
(A) M

k 1 k 1 ? , k ? Z } , N ? {x | x ? ? , k ? Z } ,则 2 4 4 2
(C) M

?N

(B) M

?N

?N

(D) M ? N ? ?

【答案】 :B 【解析】 :由集合之间的关系可知, M ? N ,或者可以取几个特殊的数,可以得到 B 考点二 集合的简单运算

【例题 3】 :已知集合 M ? {1, 2,3}, N ? {2,3, 4} ,则
A. M ? N B. N ? M C. M ? N ? {2,3} D. M

N ? {1, 4}

【答案】 :C 【解析】 :根据集合的运算,正确的只有 C。

【例题 4】 :设集合 U ? ?1,2,3,4,5?, A ? ?1,2,3?, B ? ?2,3,4? ,则 CU ( A ? B) =( ) 【答案】 : CU ( A ? B) ? {1,4,5} 【解析】 :因为 A ? B ? {2,3} ,所以 CU ( A ? B) ? {1,4,5} 。 考点三 集合中含有不等式的问题

M 【例题 5】 :设全集是实数集 R, M ,N ,则 CR ? { x | ? 2 ? x ? 2 } ? { x | x ? 1 } ?N ?

M 【答案】 : CR ? N ? {x x ? ?2} 。
M 【解析】 :因为 CU M ? {x x ? ?2或x ? 2},所以 CR ? N ? {x x ? ?2} 。

? x?3 ? 【例题 6】 :已知集合 M ? x ? ? x | ? 0?,N ? ? x | x ≤ ?3? ,则集合 ?x | x ≥1? =( ? x ?1 ?



A. M

N

B. M

N

C. CU (M ? N )

D. CU (M ? N )

【答案】 :D

【解析】 :因为 M ? {x ? 3 ? x ? 1} ,要达到 ?x | x ≥1? 只有 CU (M ? N ) 。 考点四 集合中含有参数的问题

【例题 7】 :设集合 A={-1,1,3},B={a+2,a2+4},A∩B={3},则实数 a=___________. 【答案】 :1 【解析】 :因为 B 中必须有 3,所以 a ? 1 。 【例题 8】 :若集合 A ? ?x | x ≤ 2? , B ? ?x | x ? a? 满足 A B ? {x x ? 2} ,则实数 a 的取值范围 【答案】 :a ? 2 【解析】 :如果 a ? 2 , A B ? ? ,所以 a ? 2 。 考点五 集合中信息的问题

【例题 9】 : 定义集合运算: A ? B ? ? z z ? xy , x ? A, y ? B? . 设 A ? ?1, 2? , B ? ?0, 2? ,则集合 A ? B 的所有
元素之和为

【答案】 :6 【解析】 :因为 A ? B ? {0, 2, 4} ,所以 2+4=6.

四、课堂练习
【基础型】
1 已知集合 A ? [1,2,3,4] ,那么 A 的真子集的个数是: (A)15 答案:A 解析: n 元集的真子集个数共有 2 -1 个,所以是 15 个。
n

(B)16

(C)3

(D)4

, 2? , B= ?2, 3? ,则 CU ( A ? B) = 2 已知全集 U ? ?1, 2,3, 4? ,集合 A= ?1
答案: CU ( A ? B) ? {4} 解析:因为 A ? B ? {1,2,3} ,所以 CU ( A ? B) ? {4} 。 3 集合 U={1,2,3,4,5},A={2,4},B={3,4,5},C={3,4},则 ( A ? B) ? (CU C ) =

答案: ( A ? B) ? (CU C) ? {2,5} 。 解析:因为 ( A ? B) ? {2,3,4,5} , CU C ? {1,2,5} ,所以 ( A ? B) ? (CU C) ? {2,5} 。

【巩固型】
1 设集合 A ? {x 0 ? x ? 3且x ? N}的真子集 的个数是( ... 答案:7
3 解析:因为 A 中共有三个元素,所以它的真子集为 2 ? 1 个。

)

2 A= ? x ? x ? 1? ? 3 x ? 7? ,则 A Z 的元素的个数
2

答案:0 解析:因为 A 中没有元素,为空集,所以为 0.

3 设集合 U ? {x ? N | 0 ? x ? 8} , S ? {1, 2, 4,5} , T ? {3,5, 7} ,则 S ? (CU T ) ?
答案: S ? (CU T ) ? {1,2,4} . 解析:因为 CU T ? {1,2,4,6,8} ,所以 S ? (CU T ) ? {1,2,4} 。

【提高型】
2 , 2 , , 3, 4 5} ? 3 x? 2 ? 0} 1 已 知 全 集 U ? {1 , 集 合 A ?{ x | x , B ? {x | x ? 2a,a ? A} , 则 集 合

CU ( A ? B) 中元素的个数为(
答案:2



解析:因为 A ? B ? {1,2,4} ,所以 CU ( A ? B) ? {3,5} 。

2

设全集为 R, 函数 f ( x) ? 1 ? x2 的定义域为 M, 则 CR M 为 (A) [-1,1] (B) (-1,1)(C) (??, ?1] ? [1, ??) (D) (??, ?1) ? (1, ??)

【答案】D
M 【解析】?1 - x 2 ? 0,? ?1 ? x ? 1.即M ? [?1,1], CR ? (??,?1) ? (1, ?) ,所以选 D

五、课程小结
本节课是高考中必考的知识点,而且在高考中往往以基础的形式考查,难度比较低,所以需要学生要准确 的理解知识点,灵活并熟练地掌握考查的对象以及与其他知识之间的综合,集合是一种方法,重点是其他

知识在集合上的应用。 (1)理解集合的概念,常用的数集。 (2)集合之间的关系,子集,真子集。 (3)集合间的运算,交集、并集、补集。 (4)理解信息题中新定义的集合关系。

六、课后作业
【基础型】
1 已知集合 U ? ?1,3,5,7,9? , A ? ?1,5,7? ,则 CU A ? 答案: CU A ? {3,9} 解析:因为 U ? ?1,3,5,7,9? ,所以 CU A ? {3,9} 。 2 设 A ? ?x | x ?1 ? 0? , B ? ?x | x ? 0?,则 A 答案: A

B =____________ .

B ? {x ?1 ? x ? 0} B ? {x ?1 ? x ? 0} 。


解析:因为 A ? ?x | x ? ?1? , B ? ?x | x ? 0? ,所以 A 3 已知集合 A ? ?1,3, m? , B ? ?3, 4? , A 答案:2 解析:因为 A

B ? ?1, 2,3, 4? 则 m ?

B ? ?1, 2,3, 4? ,所以 A 中必须有 2, m ? 2 。

【巩固型】
x2 y 2 ? ? 1} , B ? {( x, y) | y ? 3x } ,则 A ? B 的子集的个数是 1 设集合 A ? {? x, y ? | 4 16
答案:2 解析:因为 A 表示椭圆上的点构成的集合,B 表示指数函数上点构成的集合,由图像可知,有 2 个交点。

2 全集 U ? A 个数为
答案: n

B 中有 m 个元素, (CU A) ? (CU B) 中有 n 个元素,若 A ? B 非空,则 A ? B 的元素

解析: (CU A) ? (CU B) 表示 A 与 B 的公共元素个数为 n 个,所以 A ? B 的元素个数为 n 个。

3 集合 A ? ?0, 2, a? , B ? 1, a2 ,若 A B ? ?0,1, 2, 4,16? ,则 a 的值为(

? ?

)

答案: a ? 4 解析:因为 A

B ? ?0,1, 2, 4,16? ,所以 A 或 B 中必须有 4,根据集合的性质, a ? 4 。

4 设常数 a ? R ,集合 A ? {x | ( x ? 1)( x ? a) ? 0}, B ? {x | x ? a ? 1} ,若 A ? B ? R ,则 a 的取值范围为 ( ) (B) (??, 2] (C) (2, ??) (D) [2, ??)

(A) ( ??, 2) 答案 B. 解析:

与 x 轴有交点(1,0) (a,0)而 a?1<a 所以只要 a?1≤1 即可,因此 a≤2

【提高型】 1 设 U ? {n | n 是小于 9 的正整数} , A ? {n ?U }n 是奇数}, B ? {n ?U }n 是 3 的倍数} ,则

CU ( A ? B) ? ___
答案: CU ( A ? B) ? {2,4,8} 解析:因为 U ? {1, 2,3, 4,5, 6, 7,8} , A

B ? {1,3,5, 6, 7} ,所以 CU ( A ? B) ? {2,4,8}。


2 已知集合 A ? {1, 2,3, 4,5} , B ? {( x, y) x ? A, y ? A, x ? y ? A} ;,则 B 中所含元素的个数为( 答案:10 解析: x ? 5, y ? 1, 2,3, 4 , x ? 4, y ? 1, 2,3 , x ? 3, y ? 1, 2 , x ? 2, y ? 1 共 10 个 3 设 a, b ? R ,集合 ? 1, a ? b, a? ? ?0, 答案:2

? b ? , b?, 则b ? a ? ( ) ? a ?

1, a ? b, a? ? ?0, 解析:由 ?

? b ? , b? 可知, a ? ?1, b ? 1 ,得 b ? a ? 2 。 ? a ?
B ? ? 的集合 S 的个数为

4 设集合 A ? {1, 2,3, 4,5,6}, B ? {4,5,6,7,8} ,则满足 S ? A 且 S 答案:56

解析:A 的子集个数为 64 个, {1, 2,3} 的子集个数为 8 个,所以 64-8=56. 5 设集合 A ? ?x||x-a|<1,x ? R?, B ? ?x |1 ? x ? 5, x ? R?.若A ? B ? ?, 则实数 a 的取值范围是 答案: a ? 6或a ? 0 解析:因为 A ? {x a ?1 ? x ? a ? 1}, B ? {x 1 ? x ? 5} , A

B ? ? ,所以 a ? 6或a ? 0 。

6 设集合 A= ?x || x ? a |? 1, x ? R? , B ? ?x || x ? b |? 2, x ? R? . 若 A ? B,则实数 a,b 必满足

(A) | a ? b |? 3
答案:D

(B) | a ? b |? 3

(C) | a ? b |? 3

(D) | a ? b |? 3 .考.资.源.

b ? 2 ? a ?1 或 b ? 2 ? a ?1 , 解析: 因为 A ? {x a ?1 ? x ? a ? 1} , B ? {x x ? b ? 2或x ? b ? 2} ,A ? B ,

所以, | a ? b |? 3 。 7 已知集合 A ? ? x log2 x ? 2 ,若 A ? B 则实数 a 的取值范围是 (c, ??) ,其中 ? , B ? (?? ,a )

c=
答案:4

.学

解析:因为 A ? {x 0 ? x ? 4} , A ? B , a ? 4 , c ? 4 。 8 记关于 x 的不等式

x?a ? 0 的解集为 P ,不等式 x ? 1 ≤1的解集为 Q . x ?1

(I)若 a ? 3 ,求 P ; (II)若 Q ? P ,求正数 a 的取值范围. 答案: (I) P ? {x ?1 ? x ? 3} , (II) a ? 2 解析: (I)解分式不等式 P ? {x ?1 ? x ? 3} ,(II) Q ? {x 0 ? x ? 2} , Q ? P ,解得 a ? 2 。 9 设 整 数 n ? 4 , 集 合 X ?{ , 令 集 合 S ? { (x , y , z ) x 1, 2 …… 3 , ,} | ?, y z ,且 三 X 条 , 件

x ? y ? z , y ? z ? x, z ? x ? y 恰有一个成立},若 ( x, y, z) 和 ( z, u, x) 都在 S 中,则下列选项正确的是
A. ( y, z, u) ? S ,( x, y, u) ? S C. ( y, z, u) ? S ,( x, y, u) ? S 答案:B 解析:①若 x ? z ,∵ ( x, y, z ) 和 ( z, u, x) 都在 S,∴ x ? y ? z , 且 x ? z ? u ∴ x ? y ? u ,且 y ? z ? u 故 ( y, z, u) ? S ,( x, y, u) ? S B. ( y, z, u) ? S ,( x, y, u) ? S D. ( y, z, u) ? S ,( x, y, u) ? S

②若 x ? z ,∵ ( x, y, z ) 和 ( z, u, x) 都在 S,∴ z ? x ? y , 且 z ? u ? x ∴ z ? u ? y ,且 u ? x ? y 故 ( y, z, u) ? S ,( x, y, u) ? S 选B



推荐相关:

【套路汇总】高考数学所有题型解题套路总结

高考数学模拟压轴大题总结+详细解析《2016 年高考...构成集合,简称集,用大写字母来表示;集合 中的各个...(常考):sin2α =2sinα cosα , cos2α =...


2018届高考数学常考知识点的常考题型

2018届高考数学常考知识点的常考题型_高考_高中教育_教育专区。高考数学常考...1 2 答 (2) 、集合小结: 1、 (福建省长乐二中等五校 2018 届高三上学期...


高考文科数学集合专题讲解及高考真题精选(含答案)

高考文科集合专题知识点总结+高考真题免费下载 集合、简易逻辑(1)集合的概念 ...【考点定位】 本题考查的知识点是必要条件、充分条件与充要条件的,其中判断 ...


高考理科数学最后的复习(所有题型归纳总结)

在未来的时间,不需想太多,用心地去做好现在的事情,相信自己,你就是最大的赢家! 高考题型知识点详细罗列一、集合 ? 子集、真子集等集合个数) 若全集 U...


高考数学重点、难点、必考点题型解析及思路总结_图文

高考数学重点、难点、必考点题型解析及思路总结“会...有时需要进行检验求解的结果是满足集合中元素的 1 ...【易错点分析】本题主要考查对数函数的单调性及复合...


高考数学常考题型的总结(必修五)

高考数学常考题型的总结(必修五)对高三理科来说,必修五是高考的必考内容,它不仅要考查基础知识点,而且还要考查解题方法和解题思路 的问题。同学们在复习过程中,...


高考涉及到集合的相关题目及题型总结

高考涉及到集合的相关题目及题型总结 - 高考考集合的题目可以分为三大类: ①函数性质填空题,考察函数基本性质(单调性、奇偶性),一般是二 次函数或指对数函数;...


高考数学概念、方法、易错点、题型总结大全

高考数学概念、方法、易错点、题型总结大全_高三数学_数学_高中教育_教育专区。...N 是集合 M 到 N 的映射, 下列说法正确的是 A、M 中每一个元素在 N 中...


高考理科数学最后的复习(所有题型归纳总结)

在未来的时间,不需想太多,用心地去做好现在的事情,相信自己,你就是最大的赢家! 高考题型知识点详细罗列一、集合 ? 子集、真子集等集合个数) 若全集 U...


2016高考数学第二轮复习专题一 集合与常用逻辑用语

2016高考数学第二轮复习专题一 集合与常用逻辑用语_高三数学_数学_高中教育_教育...第2练 常用逻辑用语中的常考题型” 题型一 充分必要条件问题 例 1 (1)若...

网站首页 | 网站地图
All rights reserved Powered by 学霸学习网 www.tceic.com
copyright ©right 2010-2021。
文档资料库内容来自网络,如有侵犯请联系客服。zhit325@126.com