tceic.com
简单学习网 让学习变简单
当前位置:首页 >> 数学 >>

两角和差二倍角公式


系列丛书

必考部分

必考部分

进入导航

系列丛书

第四章
三角函数、解三角形

必考部分

进入导航

系列丛书

第五节

两角和与差及二倍角的三角函数

r />
高三总复习 ·北师大版 ·数学(理)

进入导航

第四章

第五节

系列丛书

考 纲 解 读

1 .会 用 向 量 的 数 量 积 推 导 出 两 角 差 的 余 弦 公 式 2 .能 利 用 两 角 差 的 余 弦 公 式 推 导 出 两 角 差 的 正 弦 、 正 切 公 式. 3 .能 利 用 两 角 差 的 余 弦 公 式 推 导 出 两 角 和 的 正 弦 、 余 弦 、 正 切 公 式 , 推 导 出 二 倍 角 的 正 弦 、 余 弦 、 正 切 公 式 , 了 解 它 们 的 内 在 联 系 .

.

高三总复习 ·北师大版 ·数学(理)

进入导航

第四章

第五节

系列丛书

考 纲 解 读

4 .能 运 用 两 角 和 与 差 的 正 弦 、 余 弦 、 正 切 公 式 以 及 二 倍 角 的 正 弦 、 余 弦 和 正 切 公 式 进 行 简 单 的 恒 等 变 换 积 化 和 差 、 和 差 化 积 、 半 角 公 式 , 但 对 这 三 组 公 式 不 要 求 记 忆?. ?包 括 导 出

高三总复习 ·北师大版 ·数学(理)

进入导航

第四章

第五节

系列丛书

考情剖析

1 .主 要 考 查 利 用 两 角 和 与 差 的 正 弦 、 余 弦 、 正 切 公 式 及 二 倍 角 公 式 进 行 化 简 、 求 值 , 如 年 广 东 T 1 6 、2 0 1 4年 重 庆 T9等. 2 .考 查 形 式 既 有 选 择 题 、 填 空 题 , 也 有 解 答 题 , 且 常 与 三 角 函 数 的 性 质 、 向 量 、 解 三 角 形 的 知 识 相 结 合 命 题 , 如 2 0 1 4 年 全 国 大 纲 理 T 1 7 等. 2 0 1 4 年 新 课 标 ⅠT8、2 0 1 3

高三总复习 ·北师大版 ·数学(理)

进入导航

第四章

第五节

系列丛书

自主回顾· 打基础

易错警示· 提素能

突破考点· 速通关

课时作业

高三总复习 ·北师大版 ·数学(理)

进入导航

第四章

第五节

系列丛书

自主回顾·打基础01
夯实基础·厚积薄发

高三总复习 ·北师大版 ·数学(理)

进入导航

第四章

第五节

系列丛书

1.两 角 和 与 差 的 正 弦 、 余 弦 、 正 切 公 式

s n i_ α c o s β± c o s αs n i β s n i( α± β)=_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
c o s α c o s n i αs n i β c o s ( α± β)=_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _β?s
a tn α± a tn β 1 ? a t n tn β a tn ( α± β ) =_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ αa

高三总复习 ·北师大版 ·数学(理)

进入导航

第四章

第五节

系列丛书

[探 究] 1 .两 角 和 与 差 的 正 切 公 式 对 任 意 角 都 适 用 吗 ? 若 出 现 不 适 用 的 情 况 如 何 化 简 ? 提 示 : 在T(α+β)与T(α-β)中 , α,β,α± β都 不 等 于 kπ π + 2 (k∈Z), 即 保 证 a tn α,a tn β,a tn ( α+β)都 有 意 义 ; 若 中 有 一 角 是 π kπ+2(k∈Z), 可 利 用 诱 导 公 式 化 简 . α, β

高三总复习 ·北师大版 ·数学(理)

进入导航

第四章

第五节

系列丛书

2.二 倍 角 的 正 弦 、 余 弦 、 正 切 公 式

2 s n i o s α s n i2 α=_ _ _ _ _ _ αc _ _ _ _
2 2 c o s α - s n i α=2 c o s c o s 2 α= 2

α-1=1-2 s n i

2

α

2 a tn α 1-a tn 2α tan2α=________

高三总复习 ·北师大版 ·数学(理)

进入导航

第四章

第五节

系列丛书

[探 究 ]2.二 倍 角 余 弦 公 式 的 常 用 变 形 是 什 么 ? 它 有 何 重 要 应 用 ? 提 示 : 二 倍 角 余 弦 公 式 的 常 用 变 形 是 : c o s 2α=

1+c o s 2 α 1-c o s 2 α 2 ,s n i α= , 这 就 是 使 用 极 其 广 泛 的 降 幂 扩 2 2 角 公 式 . 在 三 角 恒 等 变 换 中 , 这 两 个 公 式 可 以 实 现 三 角 式 的“次 数 ”降 低 , 利 于 问 题 的 研 究 .

高三总复习 ·北师大版 ·数学(理)

进入导航

第四章

第五节

系列丛书

3.半 角 公 式 ( 1 ) 用c o s α表 示s n i 2 ,c o s 2,a tn 2. 1-c o s α 1+c o s α α α 2 2 s n i 2 2 =_ _ _ _ _ _ _ _ _ _ _ _ ;c o s 2 2 =_ _ _ _ _ _ _ _ _ _ _ _ 1-c o s α _ _ _ _ _ _ _ _ _ _ _c . 1 + o s α _
2α 2α 2α

α ;a tn 2 2 =

高三总复习 ·北师大版 ·数学(理)

进入导航

第四章

第五节

系列丛书

α α α ( 2 ) 用c o s α表示sin2,cos2,tan2. 1-c o s α α sin2=± ___________ ; 2

1+c o s α α 2 cos2=± ___________ ; 1-c o s α α 1+c o s α ; tan2=± ___________
α (3)用sinα,cosα表示tan2. 1-cosα sinα α tan2= = sinα . 1+cosα
高三总复习 ·北师大版 ·数学(理)
进入导航

第四章

第五节

系列丛书

[探 究]

3 .如 何 用 a tn α表 示s n i2 α与c o s 2 α?

2 s n i αc o s α 提 示 :s n i2 α=2 s n i αc o s α= 2 s n i α+c o s 2α 2 a tn α = 2 a tn α+1
2 2 c o s α - s n i α 2 2 c o s 2 α=c o s α-s n i α= 2 c o s α+s n i 2α

1-a tn 2α = 1+a tn 2α

高三总复习 ·北师大版 ·数学(理)

进入导航

第四章

第五节

系列丛书

4.形 如 as n i x+bc o s x的 化 简 b as n i x+bc o s x= a +b s n i( x+φ),其 中a tn φ=a.
2 2

高三总复习 ·北师大版 ·数学(理)

进入导航

第四章

第五节

系列丛书

3 1.( 2 0 1 5· 上 饶 模 拟 )已 知c o s α= 5 ,α是 第 一 象 限 角 , 则 π 1+ 2c o s ?2α-4? π s n i ?α+2? 2 A.5 1 4 C. 5

=(

) 7 B.5 2 D. -5

答案:C
高三总复习 ·北师大版 ·数学(理)
进入导航

第四章

第五节

系列丛书

3 解 析 : ∵c o s α=5, 且 α是 第 一 象 限 角 ,

4 ∴s n i α=5,

7 2 4 1+c o s 2 α+s n i2 α 1-2 5 +2 5 1 4 原 式 = = = . c o s α 3 5 5

高三总复习 ·北师大版 ·数学(理)

进入导航

第四章

第五节

系列丛书

2.( 2 0 1 3 · 浙江理)已 知 α∈R,s n i α+2 c o s α= a tn 2 α= ( 4 A.3
答案:C

1 0 则 2 ,

) 3 B.4 3 C. -4 4 D.-3

高三总复习 ·北师大版 ·数学(理)

进入导航

第四章

第五节

系列丛书

1 0 解 析 : 将s n i α+2 c o s α= 2 两 边 平 方 可 得 s n i α+4 s n i αc o s α+4 c o s 将 左 边 分 子 分 母 同 除 以
2 2

5 α=2.

c o s 2α得 ,

3+ 4 a tn α 3 解 得 a tn α=3, 2 = , 2 1+a tn α 2 a tn α 6 3 ∴a tn 2 α= = = - 4. 1-a tn 2α 1-9 注 意c o s α∈[-1 1 ,] .

高三总复习 ·北师大版 ·数学(理)

进入导航

第四章

第五节

系列丛书

3.( 2 0 1 5 · 云 南 保 山 一 模 2 4 θ =2 则c o s 2的 值 为 ( 5, 3 A.5 3 C.± 5 4 B.5 )

)已 知 θ为 第 二 象 限 角 ,

s n i( π

-θ)

4 D.± 5

答案:C

高三总复习 ·北师大版 ·数学(理)

进入导航

第四章

第五节

系列丛书

解 析 : ∵θ为 第 二 象 限 角 . θ ∴2为 第 一 、 三 象 限 角 . θ ∴c o s 2的 值 有 两 个 . 由s n i( π 2 4 2 4 -θ)=2 可 知 s n i θ=2 5, 5,


7 ∴c o s θ= -2 c o s 5 ,∴2 3 θ ∴c o s 2=± 5.

1 8 2=2 5.

高三总复习 ·北师大版 ·数学(理)

进入导航

第四章

第五节

系列丛书

π π 4.( 2 0 1 4 · 新 课 标 Ⅰ理)设α∈(0, 2 ),β∈(0, 2 ),且tanα 1+sinβ = cosβ ,则( π A.3α-β=2 π C.2α-β=2 ) π B.3α+β=2 π D.2α+β=2

答案:C

高三总复习 ·北师大版 ·数学(理)

进入导航

第四章

第五节

系列丛书

解 析 : 本 题 考 查 了 诱 导 公 式 以 及 三 角 恒 等 变 换 . 运 用 π 1+s n i ?2α-2? π π 2α-β=2,β=2α-2, 所 以 a tn α= π c o s ?2α-2?

验 证 法 , 当

1-c o s 2 α 2 s · n i 2α = s tn α. n i2 α = s n i2 α =a

高三总复习 ·北师大版 ·数学(理)

进入导航

第四章

第五节

系列丛书

5.a tn 2 0 °

+a tn 4 0 °

+ 3t a n 2 0 ° a tn 4 0 °

=_ _ _ _ _ _ _ _

.

答案: 3
a tn 2 0 ° +a tn 4 0 ° +4 0 ° ) = 1-a tn 2 0 ° a tn 4 0 °

解 析 :∵a tn 6 0 ° ∴a tn 2 0 ° +a tn 4 0 °

=a tn ( 2 0 °



=a tn 6 0 ° ( 1

-a tn 2 0 ° a tn 4 0 ° )

= 3- 3t a n 2 0 ° a tn 4 0 ° + 3t a n 2 0 ° a tn 4 0 ° = 3.

,∴原

式= 3- 3t a n 2 0 ° a tn 4 0 °

高三总复习 ·北师大版 ·数学(理)

进入导航

第四章

第五节

系列丛书

突破考点·速通关02
互动探究·各个击破

高三总复习 ·北师大版 ·数学(理)

进入导航

第四章

第五节

系列丛书

三 角 函 数 式 的 化 简

[例1 ]

θ θ ?1+s n i θ+c o s θ??s n i 2-c o s 2? ( 1 ) 化 简 2+2 c o s θ

( 0 < θ< π ) . ( 2 ) 化 简[ 2 s n i5 0 ° +s n i1 0 ° ( 1 + 3t a n 1 0 ° ) ] · 2 s n i
2

8 0 °.

高三总复习 ·北师大版 ·数学(理)

进入导航

第四章

第五节

系列丛书

θ ( 1 ) 把 角 θ变 为 入 手 , 合 理 使 用 公 式 . 2 ( 2 ) 切 化 弦 , 通 分 , 利 用 公 式 把 非 特 殊 角 化 为 特 殊 角 .

高三总复习 ·北师大版 ·数学(理)

进入导航

第四章

第五节

系列丛书

解 析 :( 1 ) 原 式 =

θ θ ?2 s n i 2c o s 2+2 c o s

θ θ n i 2-c o s 2? 2??s 2θ 4 c o s 2



θ θ ?s n i 22-c o s 22? θ =c o s 2· θ c |o s 2| θ -c o s 2c · o s θ = . θ c |o s 2|

高三总复习 ·北师大版 ·数学(理)

进入导航

第四章

第五节

系列丛书

θ π θ 因为0<θ<π,所以0< < ,所以c o s >0, 2 2 2 所以原式=-c o s θ. ( 2 ) 原式=( 2 s n i5 0 ° ? ? =? 2 s n i5 0 ° ? · 2c o s 1 0 ° +s n i1 0 ° · 1 c o s 1 0 ° 2 c o s 1 0 ° + 3s n i1 0 ° c o s 1 0 ° ? ? ? ? -1 0 ° ) ] )· 2· s n i8 0 °

+2 s n i1 0 ° ·

3 + s n i1 0 ° 2 c o s 1 0 ° +s n i1 0 ° c · o s ( 6 0 °

=2 2[ s n i5 0 ° c · o s 1 0 °

=2 2s n i( 5 0 °

3 +1 0 ° ) =2 2× 2 = 6.
进入导航

高三总复习 ·北师大版 ·数学(理)

第四章

第五节

系列丛书

方 法 探 究

高三总复习 ·北师大版 ·数学(理)

进入导航

第四章

第五节

系列丛书

( 1 ) ( 2 0 1

5· 石 家 庄 质 检

π a tn ?4+α?c · o s 2 α )计 算 的 值 为 ( π 2 c o s 2?4-α? B.2 D.1

)

A. -2 C. -1

高三总复习 ·北师大版 ·数学(理)

进入导航

第四章

第五节

系列丛书

( 2 ) ( 2 0 1 1 A.2 C. 2

5· 太 原 模 拟 )

s n i2 0 °

1+c o s 4 0 ° c o s 5 0 °

=(

)

2 B. 2 D.2

答案:(1)D (2)B

高三总复习 ·北师大版 ·数学(理)

进入导航

第四章

第五节

系列丛书

π a tn ?4+α?c · o s 2 α 解 析 : ( 1 ) 2 π 2 c o s ?4-α? π s n i ?4+α?c · o s 2 α = π 2 π 2 s n i ?4+α?c o s ?4+α? = c o s 2 α π π 2 s n i ?4+α?c o s ?4+α?

高三总复习 ·北师大版 ·数学(理)

进入导航

第四章

第五节

系列丛书

c o s 2 α = = π s n i2 ? +α? s n i 4 c o s 2 α = =1 . c o s 2 α ( 2 ) = s n i2 0 ° s n i2 0 °

c o s 2 α π ? +2α? 2

1+c o s 4 0 ° c o s 5 0 ° 2?c o s 2 0 ° s n i4 0 ° ?2

2s n i2 0 ° c o s 2 0 ° = s n i4 0 °

高三总复习 ·北师大版 ·数学(理)

进入导航

第四章

第五节

系列丛书

2 n i4 0 ° 2s = s n i4 0 °

2 =2

高三总复习 ·北师大版 ·数学(理)

进入导航

第四章

第五节

系列丛书

三 角 函 数 的 求 值 或 求 角 问 题

[例2]

π β 1 ( 1 ) 已知0<β< <α<π,且c o s ( α- )=- , 2 2 9

α 2 s n i( 2-β)=3,求c o s ( α+β)的值; 1 ( 2 ) 已知α,β∈(0,π),且a tn ( α-β)= 2 ,a tn β=- 1 ,求2α-β的值. 7

高三总复习 ·北师大版 ·数学(理)

进入导航

第四章

第五节

系列丛书

α+β β α ( 1 ) 拆 分 角 : 利 用 2 =(α- 2 )-( 2 -β), 平 方 关 系 分 别 求 各 角 的 正 弦 、 余 弦 . ( 2 ) 2 α-β=α+(α-β);α=(α-β)+β.

高三总复习 ·北师大版 ·数学(理)

进入导航

第四章

第五节

系列丛书

π [解 析] ( 1 ) ∵0 < β<2<α<π, π α π π β ∴-4<2-β<2,4<α-2<π, α ∴c o s ( 2-β)= β s n i( α-2)= 5 α 1-s n i ? 2 -β ? = 3 ,
2

β 4 5 1-c o s ?α-2?= 9 ,
2

α+β β α ∴c o s 2 =co s [ ( α-2)-(2-β)]

高三总复习 ·北师大版 ·数学(理)

进入导航

第四章

第五节

系列丛书

β =c o s ( α-2) c o s (

α β n i( α-2) s n i( 2-β)+s

α 2-β)

1 5 4 5 2 7 5 =(-9)× 3 + 9 ×3= 2 7 , ∴c o s ( α+β)=2 c o s
2α+β

4 9 ×5 2 3 9 -1=2× -1= - . 2 7 2 9 7 2 9

高三总复习 ·北师大版 ·数学(理)

进入导航

第四章

第五节

系列丛书

( 2 ) ∵a tn α=a tn [ (

a tn ?α-β?+a tn β α-β)+β]= 1-a tn ?α-β?a tn β

1 1 2-7 1 = 1 1=3>0, 1+2×7 1 2× 3 π 2 a tn α 3 ∴0 < α<2, 又 ∵a tn 2 α= = 1 2=4>0, 1-a tn 2α 1-? ? 3

高三总复习 ·北师大版 ·数学(理)

进入导航

第四章

第五节

系列丛书

π ∴0 < 2 α< . 2 ∴a tn ( 2 a tn 2 α-a tn β α-β)= 1+a tn 2 αa tn β

3 1 4+7 = 3 1=1. 1-4×7 1 π ∵a tn β=- <0,∴ <β<π,-π < 2 α-β<0, 7 2 3π ∴2α-β=- 4 .
高三总复习 ·北师大版 ·数学(理)
进入导航

第四章

第五节

系列丛书

方 法 探 究
α+β α+β β α 1 .注 意 变 角 (α- 2 )-( 2 -β)= 2 , 可 先 求 c o s 2 或 α+β s n i 值 . 2 的 2. 先 由 a tn α=a tn [ ( 的 值 , 这 种 方 法 的 优 点 是 可 确 定 α-β)+β], 求a tn α的 值 , 再 求 2α的 取 值 范 围 . a tn 2 α

高三总复习 ·北师大版 ·数学(理)

进入导航

第四章

第五节

系列丛书

方法探究
3. 通 过 求 角 的 某 种 三 角 函 数 值 来 求 角 , 在 选 取 函 数 时, 遵 照 以 下 原 则 : ( 1 ) 已 知 正 切 函 数 值 , 选 正 切 函 数 ; ( 2 )

已 知 正 、 余 弦 函 数 值 , 选 正 弦 或 余 弦 函 数 ; 若 角 的 范 围 是 π (0, 2 ), 选 正 、 余 弦 皆 可 ; 若 角 的 范 围 是 好 ; 若 角 的 范 围 为 π π (-2,2), 选 正 弦 较 好 . (0,π ), 选 余 弦 较

高三总复习 ·北师大版 ·数学(理)

进入导航

第四章

第五节

系列丛书

方法探究
4. 解 这 类 问 题 的 一 般 步 骤 : 值 ;( 2 ) 确 定 角 的 范 围 ; ( 1 ) 求 角 的 某 一 个 三 角 函 数

( 3 ) 根 据 角 的 范 围 写 出 所 求 的 角 .

高三总复习 ·北师大版 ·数学(理)

进入导航

第四章

第五节

系列丛书

π ( 2 0 1 3 · 广 东 理 )已 知 函 数 f(x)= 2c o s ( x-1 2 ),x∈R. π ( 1 ) 求f(-6)的 值 ; 3 3 π π ( 2 ) 若c o s θ=5,θ∈( 2 ,2 π ) , 求 f(2θ+3).

高三总复习 ·北师大版 ·数学(理)

进入导航

第四章

第五节

系列丛书

π 答 案 :( 1 ) f(-6) π π = 2c o s ( -6-1 2) π π = 2c o s ( -4)= 2c o s 4 =1 π π π π ( 2 ) f(2θ+ 3 )= 2cos(2θ+ 3 - 12 )= 2cos(2θ+ 4 )=cos2θ -sin2θ

高三总复习 ·北师大版 ·数学(理)

进入导航

第四章

第五节

系列丛书

3 3 π 因 为c o s θ=5,θ∈( 2 ,2 π ) , 4 所 以s n i θ= -5 2 4 2 2 所 以s n i2 θ=2 s n i θc o s θ= -2 , c o s 2 θ = c o s θ - s n i θ= - 5 7 2 5 π 7 2 4 1 7 所 以 f(2θ+3)=c o s 2 θ-s n i2 θ= -2 5 -( - 2 5 )=2 5.

高三总复习 ·北师大版 ·数学(理)

进入导航

第四章

第五节

系列丛书

三 角 函 数 变 换 的 简 单 应 用

[例3 ]

已 知 函 数 f(x)=s n i( x+θ)+ac o s ( x+2θ), 其 中

π π a∈R,θ∈(-2,2). π ( 1 ) 当a= 2 ,θ= 4 时 , 求 f(x)在 区 间 [0,π ]上 的 最 大 值 与 最 小 值 ; π ( 2 ) 若f(2)=0,f( π ) =1,求a,θ的 值 .

高三总复习 ·北师大版 ·数学(理)

进入导航

第四章

第五节

系列丛书

( 1 ) 先 化 简 函 数 关 系 式 , 再 结 合 三 角 函 数 的 性 质 求 最 值 . ( 2 ) 利 用 方 程 组 求 解 字 母 的 值 .

高三总复习 ·北师大版 ·数学(理)

进入导航

第四章

第五节

系列丛书

π π [解 析] ( 1 ) f ( x) =s n i( x+4)+ 2c o s ( x+2) 2 2 2 =2( s n i x+c o s x)- 2s n i x= 2 c o s x- 2 s n i x π =s n i( 4-x). π 3π π 因 为 x∈[0,π],从而4-x∈[- 4 ,4]. 2 故f(x)在[0,π]上的最大值为 2 ,最小值为-1.

高三总复习 ·北师大版 ·数学(理)

进入导航

第四章

第五节

系列丛书

π ? ? ?f? ?=0 o s θ?1-2as n i θ?=0 ?c 2 ( 2 ) 由? 得? , 2 ? n i θ-s n i θ-a=1 ?2as ? ?f?π?=1 π π 又θ∈(-2,2)知c o s θ≠0, a= -1 ? ? 解 得? π . θ= -6 ? ?

高三总复习 ·北师大版 ·数学(理)

进入导航

第四章

第五节

系列丛书

方 法 探 究
1 .利 用 as n i x+bc o s x= a2+b2 s n i( x+φ)把 形 如 y=as n i x

+bc o s x+k的 函 数 化 为 一 个 角 的 一 种 函 数 的 一 次 式 , 可 以 求 三 角 函 数 的 周 期 、 单 调 区 间 、 值 域 、 最 值 和 对 称 轴 等 . 2. 化 as n i x+bc o s x= a2+b2 s n i( x+φ)时φ的 求 法 ①a tn φ b =a;②φ所 在 象 限 由 (a,b)点 确 定 .

高三总复习 ·北师大版 ·数学(理)

进入导航

第四章

第五节

系列丛书

设 函 数 f(x)=s n i(

πx π c o s 3 -6)-2

2πx

6.

( 1 ) 求y=f(x)的 最 小 正 周 期 及 单 调 递 增 区 间 ; ( 2 ) 若 函 数 y=g(x)与y=f(x)的 图 像 关 于 直 线 求 当 x∈[ 0 1 ,] 时 , 函 数 y=g(x)的 最 大 值 . x=2对 称 ,

高三总复习 ·北师大版 ·数学(理)

进入导航

第四章

第五节

系列丛书

解 析 : ( 1 ) 由 题 意 知 f(x) 3 πx 3 πx πx π =2s n i 3 -2c o s 3 -1= 3· s n i( 3 -3)-1, 所 以 y=f(x) 的 最 小 正 周 期 2 π T= π =6 . 3

π π π π 由2kπ-2≤3x-3≤2kπ+2,k∈Z, 1 5 得6k-2≤x≤6k+2,k∈Z, 所 以 y=f(x)的 单 调 递 增 区 间 为
高三总复习 ·北师大版 ·数学(理)
进入导航

1 5 [6k-2,6k+2],k∈Z.
第四章 第五节

系列丛书

( 2 ) 因 为 函 数 y=g(x)与y=f(x)的 图 像 关 于 直 线 称 , 所 以 当 x∈[ 0 1 ,] =f(x)的 最 大 值 . 当x∈[ 3 4 ,] 时 , y=g(x)的 最 大 值 即 为

x=2对

x∈[ 3 4 ,]

时 ,y

π π 2 π π 3 时 , 3x-3∈[3π,π ] ,s n i( 3x-3)∈[0, 2 ], 1 2.

1 f(x)∈[-1,2], 此 时 y=g(x)的 最 大 值 为

高三总复习 ·北师大版 ·数学(理)

进入导航

第四章

第五节

系列丛书

1.两 角 和 与 差 的 正 弦 、 余 弦 、 正 切 公 式 与 倍 角 公 式 的 关 系

高三总复习 ·北师大版 ·数学(理)

进入导航

第四章

第五节

系列丛书

2.拼 角 、 凑 角 的 技 巧 ( 1 ) 用 已 知 角 表 示 未 知 角 2α=(α+β)+(α-β);2β=(α+β)-(α-β); α=(α+β)-β=(α-β)+β; α+β α-β α+β α-β α= 2 + 2 ,β= 2 - 2 ; α-β β α =(α+ )-( +β)等 . 2 2 2

高三总复习 ·北师大版 ·数学(理)

进入导航

第四章

第五节

系列丛书

2. 拼 角 、 凑 角 的 技 巧 ( 1 ) 用 已 知 角 表 示 未 知 角 2α=(α+β)+(α-β);2β=(α+β)-(α-β); α=(α+β)-β=(α-β)+β; α+β α-β α+β α-β α= 2 + 2 ,β= 2 - 2 ; α-β β α . 2 =(α+2)-(2+β)等

高三总复习 ·北师大版 ·数学(理)

进入导航

第四章

第五节

系列丛书

( 2 ) 互 余 与 互 补 关 系 π π π π π π (4+α)+(4-α)=2;(3+α)+(6-α)=2; 3 π π π 5 π ( 4 -α)+(4+α)=π;(6+α)+( 6 -α)=π .

高三总复习 ·北师大版 ·数学(理)

进入导航

第四章

第五节

系列丛书

3.应 用 公 式 解 决 问 题 的 三 个 变 化 角 度 ( 1 ) 变 角 : 目 的 是 沟 通 题 设 条 件 与 结 论 中 所 涉 及 的 角 , 其 手 法 通 常 是 “配 凑 ”.

( 2 ) 变 名 : 通 过 变 换 函 数 名 称 达 到 减 少 函 数 种 类 的 目 的 , 其 手 法 通 常 有 “切 化 弦 ”、“升 幂 与 降 幂 ”等 .

( 3 ) 变 式 : 根 据 式 子 的 结 构 特 征 进 行 变 形 , 使 其 更 贴 近 某 个 公 式 或 某 个 期 待 的 目 标 , 其 手 法 通 常 有 : 换”、“逆 用 变 用 公 式 合”、“配 方 与 平 方
高三总复习 ·北师大版 ·数学(理)

“常 值 代

”、“通 分 约 分 ”、“分 解 与 组 ”等 .
进入导航

第四章

第五节

系列丛书

4. 辅 助 角 公 式 可 利 用 辅 助 角 公 式 求 最 值 、 单 调 区 间 、 周 期 . y = as n i α+bc o s α= a2+b2≥|y|. b a +b s n i( α+φ)(其 中a tn φ= a )有
2 2

高三总复习 ·北师大版 ·数学(理)

进入导航

第四章

第五节

系列丛书

5.三 角 恒 等 变 换 的 基 本 方 向 三 角 函 数 求 值 、 化 简 的 基 本 思 路 是 “变 换 ”、 通 过 适 当

的 变 换 达 到 由 此 及 彼 的 目 的 . 变 换 的 基 本 方 向 有 两 个 : 一 是 变 换 函 数 名 称 , 可 以 使 用 诱 导 公 式 、 同 角 三 角 函 数 关 系 、 二 倍 角 的 余 弦 公 式 等 ; 二 是 变 换 角 的 形 式 , 可 以 使 用 两 角 和 与 差 的 三 角 函 数 公 式 、 倍 角 公 式 、 对 角 进 行 代 数 形 式 的 变 换 等 .

高三总复习 ·北师大版 ·数学(理)

进入导航

第四章

第五节

系列丛书

易错警示 ·提素能 03
拨云去雾·巧释疑云

高三总复习 ·北师大版 ·数学(理)

进入导航

第四章

第五节

系列丛书

忽 视 三 角 函 数 中 的 隐 含 条 件 致 误 [典 例] ( 2 0 1 5 · 临 沂 模 拟 )若α、β是 锐 角 , 且 1 1 = - 2,c o s α-c o s β=2, 则a tn ( α-β)=_ _ _ _ _ _ _ _ . s n i α-s n i β

高三总复习 ·北师大版 ·数学(理)

进入导航

第四章

第五节

系列丛书

[审 题 视 角 ]

由 于 α、β是 锐 角 , 所 以 -

π π 但 2 <α-β< 2 ,

1 还 应 注 意 s n i α-s n i β=-2<0,∴s n i α< s n i β,α<β. π 从 而 - 2 <α-β<0, 故 由 co s ( α-β)的 值 只 能 得 到 β) < 0 的 值 , 本 题 若 直 接 由 s n i( α-

π π α,β∈(0, 2 ), 得 α-β∈(- 2 ,

π 则 放 宽 了 角 的 范 围 , 会 导 致 出 现 两 个 结 果 的 错 误 . 2 ),

高三总复习 ·北师大版 ·数学(理)

进入导航

第四章

第五节

系列丛书

1 1 [解 析 ] ∵s n i α-s n i β=-2,c o s α-c o s β=2, 两 式 平 方 相 加 得 : 即2-2 c o s ( 1 2-2 c o s αc o s β-2 s n i αs n i β=2,

1 3 α-β)=2,∴c o s ( α-β)=4. 1 π s n i α-s n i β= - 2<0,∴0 < α<β<2.

∵α、β是 锐 角 , 且

高三总复习 ·北师大版 ·数学(理)

进入导航

第四章

第五节

系列丛书

π ∴- 2 <α-β< 0 . ∴s n i( α-β)= - s n i ?α-β? 7 ∴a tn ( α-β)= = - 3. c o s ?α-β?
7 [答案] - 3

7 1-c o s 2?α-β? = - 4 .

高三总复习 ·北师大版 ·数学(理)

进入导航

第四章

第五节

系列丛书

三 角 函 数 值 符 号 的 确 定 , 是 解 决 三 角 求 值 、 明 的 关 键 , 学 生 解 题 中 容 易 忽 视 对 条 件 的 深 刻 挖 掘 , 直 接 根 据 已 知 , “宽 松 ”条 件 确 定 符 号 , 扩 大 角 的 范 围 致 误 ,

化 简 、 证

俗 话 说 : “明 枪 易 躲 , 暗 箭 难 防 认 真 分 析 、 小 心 论 证 .

”, 我 们 在 解 题 时 一 定 要

高三总复习 ·北师大版 ·数学(理)

进入导航

第四章

第五节

系列丛书

已 知 函 数 f(x)=2 s n i( 5 π ( 1 ) 求f( 4 )的 值 ;

1 π 3x-6),x∈R.

π π 10 6 ( 2 ) 设α,β∈[0, 2 ],f(3α+ 2 )= 13 ,f(3β+2π)= 5 ,求 cos(α+β)的值.

高三总复习 ·北师大版 ·数学(理)

进入导航

第四章

第五节

系列丛书

解 析 : ( 1 ) 由 题 设 知 : ( 2 ) 由 题 设 知 : =2 s n i(

5 π f( 4 )=2 s n i(

5 π π π s n i 4= 2. 1 2 -6)=2

1 0 π 6 s n i α,5=f(3β+2 π ) 1 3 =f(3α+2)=2

π β+2)=2 c o s β,

5 3 即s n i α=1 o s β=5, 3 ,c π 又α,β∈[0,2],

高三总复习 ·北师大版 ·数学(理)

进入导航

第四章

第五节

系列丛书

1 2 4 ∴c o s α=1 n i β=5, 3 ,s 1 2 3 4 5 1 6 ∴c o s ( α+β)=c o s αc o s β-s n i αs n i β=1 3 ×5-5×1 3 =6 5.

高三总复习 ·北师大版 ·数学(理)

进入导航

第四章

第五节

系列丛书

温 馨 提 示

请 做:课 时 作 业 21
(点击进入)

高三总复习 ·北师大版 ·数学(理)

进入导航

第四章

第五节


推荐相关:

两角和与差及二倍角公式讲义

两角和与差二倍角公式一. 【复习要求】 1.掌握两角和与差的正弦、余弦、正切公式,了解它们的内在联. 2.掌握二倍角的正弦、余弦、正切公式. 2.能够利用两角...


两角和与差和二倍角公式、辅助角公式

两角和与差二倍角公式、辅助角公式 上课时间:2013 上课教师: 上课重点:两角和与差公式的正确运用,凑角方法的运用 上课规划:解题技巧以及凑角方法的灵活掌握 一...


两角和与差及二倍角公式讲义,例题含答案

两角和与差二倍角公式讲义,例题含答案_数学_高中教育_教育专区。3.3 两角和与差二倍角公式(答案) 3.3 两角和与差二倍角公式一. 【复习要求】 1.掌...


两角和与差的正弦、余弦和正切公式及二倍角公式专题复习

两角和与差的正弦、余弦和正切公式及二倍角公式专题复习_数学_高中教育_教育专区。两角和与差的正弦、余弦和正切公式及二倍角公式专题复习一、知识要点: 1.两角...


015两角和与差的三角函数及二倍角公式

长春市第 150 中学 2013--2014 高三数学复习学案 015 两角和与差的三角函数及二倍角公式、三角恒等式证明基础过关 1.两角和的余弦公式的推导方法: 2.基本公式 ...


两角和与差、二倍角的三角函数公式练习题

两角和与差二倍角的三角函数公式练习题_数学_高中教育_教育专区。两角和与差二倍角的三角函数练习,知识点全面,题目新,方法灵活,适合老师参考,学生练习,是一...


高一数学期末复习15两角和差及二倍角公式

高一数学期末复习15两角和差二倍角公式_数学_高中教育_教育专区。高一数学期末复习(15) 两角和差二倍角公式一、选择题: 1. cos 24 cos36 ? sin 24 cos...


两角和与差的三角函数及二倍角公式

两角和与差的三角函数及二倍角公式_数学_高中教育_教育专区。高三 学生姓名:专目题标 年级 数学 科辅导讲义(第讲) 授课时间: 授课教师: 两角和与差的三角函数...


两角和与差及倍角公式练习题

两角和与差倍角公式练习题_高一数学_数学_高中教育_教育专区。两角和与差二倍角的三角函数问题 1。不查表求值: sin 7 ? ? cos15? ? sin 8? =___...


两角和与差及二倍角的三角函数公式,简单的三角恒等变换...

公式导出两角和的正弦、余弦、 正切公式,导出二倍角的正弦、余弦、正切公式,了解 它们的内在联系. (2)简单的三角恒等变换 能利用上述公式进行简单的恒等变换 与...

网站首页 | 网站地图
All rights reserved Powered by 简单学习网 www.tceic.com
copyright ©right 2010-2021。
文档资料库内容来自网络,如有侵犯请联系客服。zhit325@126.com