tceic.com
学霸学习网 这下你爽了
赞助商链接
当前位置:首页 >> 高一数学 >>

函数值域的常用方法及值域的应用


选校网 www.xuanxiao.com 高考频道 专业大全 历年分数线 上万张大学图片 大学视频 院校库

函数值域的常用方法及值域的应用 高考要求 函数的值域及其求法是近几年高考考查的重点内容之一 本节主要帮助考生灵活掌握求值域的各种方法,并会用 函数的值域解决实际应用问题 重难点归纳 (1)求函数的值域 此类问题主要利用求函数值域的常用方法 配方法、分离变量法、单调性法、图象法、换元法、不等式法等 无 论用什么方法求函数的值域,都必须考虑函数的定义域 (2)函数的综合性题目 此类问题主要考查函数值域、单调性、奇偶性、反函数等一些基本知识相结合的题目 此类问题要求考生具备较高的数学思维能力和综合分析能力以及较强的运算能力 在今后的命题趋势中综合性题 型仍会成为热点和重点,并可以逐渐加强 (3)运用函数的值域解决实际问题 此类问题关键是把实际问题转化为函数问题,从而利用所学知识去解决此类题要求考生具有较强的分析能力和数 学建模能力 典型题例示范讲解 例 1 设计一幅宣传画,要求画面面积为 4840 cm2,画面的宽与高的比为λ(λ<1),画面的上、下各留 8 cm 的空白,左 右各留 5 cm 空白,怎样确定画面的高与宽尺寸,才能使宣传画所用纸张面积最小?
源 源 源

新新 新新 新新 新新
源 源 源 源 源 源 源 源















h : w w j.x g o m /w c t /p k t .c y x /

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w c t 2 .6 o x @1 c m k





新新新 新新新
源 源 源 源 源 源 源 源 源 源













h : w .w jx g o /m w c t /p k t .c y x /

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w c t 2 6 o x k 1 .c m @

新新新 新新源 源源源源源源新源 源 源th源p/源源源gy源源源cx/ 源 w : w j.x t m /w k o .c 特 特特特特特 特王特王新特王 新特特 特 王 王kc@ 王新 王 新1 o.c王 x t 2 6 m w

新新新 源源新源新源新源 源 源源源 源th源p源源源gy源源源cx/ 源 /: w j.x t m /w w k o .c 特 特特特特特 特王特特特特特 新王新 王 王 x @ 2 .6 m 王 w t 1 新 王kc新王oc王

新新新 新新新 源源源源源源源源 源 源th源/:w w kj.x源gty源m /w cx/ 源 源源 o.c源源 p 特 特特特特特 特王新王王特王 特特特 特 新 王kc@ 1王o.c王 王 新新 x t 2 6 m w

新新新 源源新源新源新源 源 源源源 源th源/:w w kj.x源gty源m /w cx/ 源 源源 o.c源源 p 特 特特特特特 特王特特特特王 新王王 特 新 x t 2 .6 m 王 w @ 1 o 王kc新王c王 新







新新新新 新新新新
源 源 源 源 源 源 源 源















h : w w j.x g o m /w c t /p k t .c y x /

特 特 特 特特 特 特 特 特 特特 特 王 王 新王 王 新 王w cx新t@ 21新.6c王o 王 王k m





新新新 新新新
源 源 源 源 源 源 源 源 源 源













h : w .w jx g o /m w c t /p k t .c y x /

特 特 特 特特 特 特王特王特新王特王特 新 特 王w c新tk@ 21新6.c王o 王 王 m x







新新新新 新新新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

特 特 特 特特 特 特 特 特 特特 特 王 王 新王 王 新 王w x新kt@ 新王m 王 王 12 6c. o c

新新新 新新源 源源源源源源新源 源 源h源/源源源源源源x/c 源 t : w .x y .c /w w p k t o j g m 特 特特特特特 特王特王新特王 新特特 特 王 王新王新 王 王 x @ 1 .c m w c 2 o k t 6





新新新 新新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特 特 特 特特 特 特王特王特新王特王特 新 特 王w 新@ 1新.c王m 王 王t x k 2 6 o c

新新新 源源新源新源新源 源 源源源 源h源/源源源源源源x/c 源 t : w .x y .c /w w p k t o j g m 特 特特特特特 特王特特特特特 新王新 王 王 x 新 新 王 w c 王 m 王k@ 12 c王 t o 6 .

新新新 新新源 源源源源源源新源 源 源th源p/源源源gy源源源cx/ 源 w : w j.x t m /w k o .c 特 特特特特特 特王特王新特王 新特特 特 王 王kc@ 王新 王 新1 o.c王 x t 2 6 m w

新新新 源源新源新源新源 源 源源源 源th源p源源源gy源源源cx/ 源 /: w j.x t m /w w k o .c 特 特特特特特 特王特特特特特 新王新 王 王 x @ 2 .6 m 王 w t 1 新 王kc新王oc王

新新新 新新源 源源源源源源新源 源 源th源p/源源源gy源源源cx/ 源 w : w j.x t m /w k o .c 特 特特特特特 特王特王新特王 新特特 特 王 王kc@ 王新 王 新1 o.c王 x t 2 6 m w

新新新 源源新源新源新源 源 源源源 源th源p源源源gy源源源cx/ 源 /: w j.x t m /w w k o .c 特 特特特特特 特王特特特特特 新王新 王 王 x @ 2 .6 m 王 w t 1 新 王kc新王oc王

新新新 新新源 源源源源源源新源 源 源th源p/源源源gy源源源cx/ 源 w : w j.x t m /w k o .c 特 特特特特特 特王特王新特王 新特特 特 王 王kc@ 王新 王 新1 o.c王 x t 2 6 m w

新新新 源源新源新源新源 源 源源源 源th源p源源源gy源源源cx/ 源 /: w j.x t m /w w k o .c 特 特特特特特 特王特特特特特 新王新 王 王 x @ 2 .6 m 王 w t 1 新 王kc新王oc王

新新新 新新新 源源源源源源源源 源 源th源/:w w kj.x源gty源m /w cx/ 源 源源 o.c源源 p 特 特特特特特 特王新王王特王 特特特 特 新 王kc@ 1王o.c王 王 新新 x t 2 6 m w

新新新 源源新源新源新源 源 源源源 源th源/:w w kj.x源gty源m /w cx/ 源 源源 o.c源源 p 特 特特特特特 特王特特特特王 新王王 特 新 x t 2 .6 m 王 w @ 1 o 王kc新王c王 新

新新新 新新新 源源源源源源源源 源 源th源/:w 源k.x源源.cm /w /xc 源 源w j tyg o源源 p 特 特特特特特 特王新王王特王 特特特 特 新 王@ 1王.c王m 王 新新 w c 2 o x k t 6

新新新 源源新源新源新源 源 源源源 源th源/:w 源k.x源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特王 新王王 特 新 w 新 c m 王 王ckt@ 王王 x 1 o 2 新 6 .







新新新新 新新新新
源 源 源 源 源 源 源 源















h : w w j.x g o m /w c t /p k t .c y x /

特 特 特 特特 特 特 特 特 特特 特 王 王 新王 王 新 王w cx新t@ 21新.6c王o 王 王k m





新新新 新新新
源 源 源 源 源 源 源 源 源 源













h : w .w jx g o /m w c t /p k t .c y x /

特 特 特 特特 特 特王特王特新王特王特 新 特 王w c新tk@ 21新6.c王o 王 王 m x

2 3 ,那么λ为何值时,能使宣传画所用纸张面积最小? 如果要求λ∈[ , ] 3 4 命题意图 本题主要考查建立函数关系式和求函数最小值问题,同时考查运用所学知识解决实际问题的能力 知识依托 主要依据函数概念、奇偶性和最小值等基础知识
源 源 源

新新新新 新新新新
源 源 源 源 源 源 源 源















h : w w j.x g o m /w c t /p k t .c y x /

特 特 特 特特 特 特 特 特 特特 特 王 王 新王 王 新 王w cx新t@ 21新.6c王o 王 王k m

新新新 新新源 源源源源源源新源 源 源h源/源源源源源源x/c 源 t : w .x y .c /w w p k t o j g m 特 特特特特特 特王特王新特王 新特特 特 王 王新王新 王 王 x @ 1 .c m w c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源h源/源源源源源源x/c 源 t : w .x y .c /w w p k t o j g m 特 特特特特特 特王特特特特特 新王新 王 王 x 新 新 王 w c 王 m 王k@ 12 c王 t o 6 .





新新新 新新新
源 源 源 源 源 源 源 源 源 源













h : w .w jx g o /m w c t /p k t .c y x /

特 特 特 特特 特 特王特王特新王特王特 新 特 王w c新tk@ 21新6.c王o 王 王 m x







新新新新 新新新新
源 源 源 源 源 源 源 源















h : w w j.x g o m /w c t /p k t .c y x /

特 特 特 特特 特 特 特 特 特特 特 王 王 新王 王 新 王w cx新t@ 21新.6c王o 王 王k m

新新新 新新源 源源源源源源新源 源 源th源p/源源源gy源源源cx/ 源 w : w j.x t m /w k o .c 特 特特特特特 特王特王新特王 新特特 特 王 王kc@ 王新 王 新1 o.c王 x t 2 6 m w





新新新 新新新
源 源 源 源 源 源 源 源 源 源













h : w .w jx g o /m w c t /p k t .c y x /

特 特 特 特特 特 特王特王特新王特王特 新 特 王w c新tk@ 21新6.c王o 王 王 m x

新新新 源源新源新源新源 源 源源源 源th源p源源源gy源源源cx/ 源 /: w j.x t m /w w k o .c 特 特特特特特 特王特特特特特 新王新 王 王 x @ 2 .6 m 王 w t 1 新 王kc新王oc王

2 3 证明 S(λ)在区间[ , ]上的单调性容易出错,其次不易把应用问题转化为函数的最值问题来解决 3 4 技巧与方法 本题属于应用问题,关键是建立数学模型,并把问题转化为函数的最值问题来解决 解 设画面高为 x cm,宽为λx cm,则λx2=4840,设纸张面积为 S cm2, 则 S=(x+16)(λx+10)=λx2+(16λ+10)x+160,
错解分析
源 源 源

新新新新 新新新新
源 源 源 源 源 源 源 源















h : w w j.x g o m /w c t /p k t .c y x /

特 特 特 特特 特 特 特 特 特特 特 王 王 新王 王 新 王w cx新t@ 21新.6c王o 王 王k m

新新新 新新源 源源源源源源新源 源 源h源/源源源源源源x/c 源 t : w .x y .c /w w p k t o j g m 特 特特特特特 特王特王新特王 新特特 特 王 王新王新 王 王 x @ 1 .c m w c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源h源/源源源源源源x/c 源 t : w .x y .c /w w p k t o j g m 特 特特特特特 特王特特特特特 新王新 王 王 x 新 新 王 w c 王 m t o 6 . 王k@ 12 c王





新新新 新新新
源 源 源 源 源 源 源 源 源 源













h : w .w jx g o /m w c t /p k t .c y x /

特 特 特 特特 特 特王特王特新王特王特 新 特 王w c新tk@ 21新6.c王o 王 王 m x







新新新新 新新新新
源 源 源 源 源 源 源 源















h : w w j.x g o m /w c t /p k t .c y x /

特 特 特 特特 特 特 特 特 特特 特 王 王 新王 王 新 王w cx新t@ 21新.6c王o 王 王k m

新新新 新新源 源源源源源源新源 源 源h源/源源源源源源x/c 源 t : w .x y .c /w w p k t o j g m 特 特特特特特 特王特王新特王 新特特 特 王 王新王新 王 王 x @ 1 .c m w c 2 o k t 6





新新新 新新新
源 源 源 源 源 源 源 源 源 源













h : w .w jx g o /m w c t /p k t .c y x /

特 特 特 特特 特 特王特王特新王特王特 新 特 王w c新tk@ 21新6.c王o 王 王 m x

新新新 源源新源新源新源 源 源源源 源h源/源源源源源源x/c 源 t : w .x y .c /w w p k t o j g m 特 特特特特特 特王特特特特特 新王新 王 王 x 新 新 王 w c 王 m 王k@ 12 c王 t o 6 .







新新新新 新新新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

特 特 特 特特 特 特 特 特 特特 特 王 王 新王 王 新 c 王w x新kt@ 新王m 王 王 12 6c. o





新新新 新新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特 特 特 特特 特 特王特王特新王特王特 新 特 王w 新@ 1新.c王m 王 王t x k 2 6 o c

将 x=

22 10

λ
5

代入上式得







新新新新 新新新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

特 特 特 特特 特 特 特 特 特特 特 王 王 新王 王 新 c 王w x新kt@ 新王m 王 王 12 6c. o





新新新 新新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特 特 特 特特 特 特王特王特新王特王特 新 特 王w 新@ 1新.c王m 王 王t x k 2 6 o c

S=5000+44 10 (8 λ +

5

λ

),

当8 λ =

5 5 ,即λ= ( <1)时 S 取得最小值 8 8 λ
4840

新新新 新新源 源源源源源源新源 源 源th源p/源源源gy源源源cx/ 源 w : w j.x t m /w k o .c 特 特特特特特 特王特王新特王 新特特 特 王 王kc@ 王新 王 新1 o.c王 x t 2 6 m w 新新新 源源新源新源新源 源 源源源 源th源p源源源gy源源源cx/ 源 /: w j.x t m /w w k o .c 特 特特特特特 特王特特特特特 新王新 王 王 x @ 2 .6 m 王 w t 1 新 王kc新王oc王

此时高







新新新新 新新新新
源 源 源 源 源 源 源 源















h : w w j.x g o m /w c t /p k t .c y x /

特 特 特 特特 特 特 特 特 特特 特 王 王 新王 王 新 王w cx新t@ 21新.6c王o 王 王k m





新新新 新新新
源 源 源 源 源 源 源 源 源 源













h : w .w jx g o /m w c t /p k t .c y x /

特 特 特 特特 特 特王特王特新王特王特 新 特 王w c新tk@ 21新6.c王o 王 王 m x

x=

λ

=88 cm,









新新新新 新新新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

特 特 特 特特 特 特 特 特 特特 特 王 王 新王 王 新 王w x新kt@ 新王m 王 王 12 6c. o c





新新新 新新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特 特 特 特特 特 特王特王特新王特王特 新 特 王w 新@ 1新.c王m 王 王t x k 2 6 o c

5 λx= ×88=55 cm 8

新新新 新新源 源源源源源源新源 源 源th源p/源源源gy源源源cx/ 源 w : w j.x t m /w k o .c 特 特特特特特 特王特王新特王 新特特 特 王 王kc@ 王新 王 新1 o.c王 x t 2 6 m w 新新新 源源新源新源新源 源 源源源 源th源p源源源gy源源源cx/ 源 /: w j.x t m /w w k o .c 特 特特特特特 特王特特特特特 新王新 王 王 x @ 2 .6 m 王 w t 1 新 王kc新王oc王

2 3 2 3 如果λ∈[ , ] ,可设 ≤λ1<λ2≤ , 3 4 3 4 则由 S 的表达式得
源 源 源

新新新新 新新新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

特 特 特 特特 特 特 特 特 特特 特 王 王 新王 王 新 王w x新kt@ 新王m 王 王 12 6c. o c





新新新 新新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特 特 特 特特 特 特王特王特新王特王特 新 特 王w 新@ 1新.c王m 王 王t x k 2 6 o c

8cm

S ( λ1 ) S ( λ2 ) = 44 10 (8 λ1 + = 44 10 ( λ1 λ2 )(8 5

5

λ1
)

8 λ2

5

λ2

)
5cm 5cm

λ1λ2

8cm

又 λ1λ2 ≥

5 2 5 > ,故 8- >0, 3 8 λ1λ2
选校网 www.xuanxiao.com 专业大全 历年分数线 上万张大学图片 大学视频 院校库

选校网 www.xuanxiao.com 高考频道 专业大全 历年分数线 上万张大学图片 大学视频 院校库

2 3 ∴S(λ1)-S(λ2)<0,∴S(λ)在区间[ , ]内单调递增 3 4 2 3 2 从而对于λ∈[ , ],当λ= 时,S(λ)取得最小值 3 4 3
新新新 新新源 源源源源源源新源 源 源th源p/源源源gy源源源cx/ 源 w : w j.x t m /w k o .c 特 特特特特特 特王特王新特王 新特特 特 王 王kc@ 王新 王 新1 o.c王 x t 2 6 m w 新新新 源源新源新源新源 源 源源源 源th源p源源源gy源源源cx/ 源 /: w j.x t m /w w k o .c 特 特特特特特 特王特特特特特 新王新 王 王 王kc新王oc王 x @ 2 .6 m 王 w t 1 新

新新新 新新源 源源源源源源新源 源 源th源p/源源源gy源源源cx/ 源 w : w j.x t m /w k o .c 特 特特特特特 特王特王新特王 新特特 特 王 王kc@ 王新 王 新1 o.c王 x t 2 6 m w 新新新 源源新源新源新源 源 源源源 源th源p源源源gy源源源cx/ 源 /: w j.x t m /w w k o .c 特 特特特特特 特王特特特特特 新王新 王 王 王kc新王oc王 x @ 2 .6 m 王 w t 1 新




新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王
h /: w .x y .c /w x t w p k t o j g m /c x @ 1 .c m w c 2 o k t 6







新新 新新 新新 新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w x k 1 6 m c t 2 c o @ .





新新新 新新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w x @ 1 .c m c k 2 6 o t

画面高为 88 cm,宽为 55 cm 时,所用纸张面积最小

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x t 2 6 m w k 1 o c @ .c

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x @ 2 .6 m w t 1 o k c c

2 3 2 如果要求λ∈[ , ],当λ= 时,所用纸张面积最小 3 4 3

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
h /: w .x y .c /w x t w p k t o j g m /c x c 1 c m w k 2 o @ t 6 .

例 2 已知函数 f(x)= (1)当 a=

x2 + 2x + a ,x∈[1,+∞ ) x
新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 6 m w k 1 o c @ .c

1 时,求函数 f(x)的最小值 2 (2)若对任意 x∈[1,+∞ ) ,f(x)>0 恒成立,试求实数 a 的取值范围
新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 .6 m w @ 1 o k c c
源 源 源

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x t 2 6 m w k 1 o c @ .c

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x @ 2 .6 m w t 1 o k c c

命题意图 本题主要考查函数的最小值以及单调性问题,着重于学生的综合分析能力以及运算能力 知识依托 本题主要通过求 f(x)的最值问题来求 a 的取值范围,体现了转化的思想与分类讨论的思想 错解分析 考生不易考虑把求 a 的取值范围的问题转化为函数的最值问题来解决 技巧与方法 解法一运用转化思想把 f(x)>0 转化为关于 x 的二次不等式;解法二运用分类讨论思想解得
新新 新新 新新 新新
源 源 源 源 源 源 源 源 源 源 源 源 源 源 源

h : w w j.x g o m /w c t /p k t .c y x /

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w c t 2 .6 o x @1 c m k

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特新王 特特 特特 特特 王王 新王 王王 新新 王王
h /: w .x y .c /w x t w p k t o j g m /c x @ 1 .c m w c 2 o k t 6





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













h : w .w jx g o /m w c t /p k t .c y x /

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w c t 2 6 o x k 1 .c m @

新新新 新新 源新新源 源 源源源源 源源 源源源源 源源源源 源源 源源 特特特特 特特 特特新王 特特 王特特 新特特 王 王 王王 新新 王王
h /: w .x y .c /w x t w p k t o j g m /c x c 1 c m w k 2 o @ t 6 .







新新 新新 新新 新新
源 源 源 源 源 源 源 源















h : w w j.x g o m /w c t /p k t .c y x /

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w c t 2 .6 o x @1 c m k

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特新王 特特 特特 特特 王王 新王 王王 新新 王王
h /: w .x y .c /w x t w p k t o j g m /c x @ 1 .c m w c 2 o k t 6





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













h : w .w jx g o /m w c t /p k t .c y x /

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w c t 2 6 o x k 1 .c m @

新新新 新新 源新新源 源 源源源源 源源 源源源源 源源源源 源源 源源 特特特特 特特 特特新王 特特 王特特 新特特 王 王 王王 新新 王王
h /: w .x y .c /w x t w p k t o j g m /c x c 1 c m w k 2 o @ t 6 .







新新 新新 新新 新新
源 源 源 源 源 源 源 源















h : w w j.x g o m /w c t /p k t .c y x /

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w c t 2 .6 o x @1 c m k

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x t 2 6 m w k 1 o c @ .c





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













h : w .w jx g o /m w c t /p k t .c y x /

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w c t 2 6 o x k 1 .c m @

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x @ 2 .6 m w t 1 o k c c







新新 新新 新新 新新
源 源 源 源 源 源 源 源















h : w w j.x g o m /w c t /p k t .c y x /

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w c t 2 .6 o x @1 c m k

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特新王 特特 特特 特特 王王 新王 王王 新新 王王
h /: w .x y .c /w x t w p k t o j g m /c x @ 1 .c m w c 2 o k t 6





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













h : w .w jx g o /m w c t /p k t .c y x /

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w c t 2 6 o x k 1 .c m @

新新新 新新 源新新源 源 源源源源 源源 源源源源 源源源源 源源 源源 特特特特 特特 特特新王 特特 王特特 新特特 王 王 王王 新新 王王
h /: w .x y .c /w x t w p k t o j g m /c x c 1 c m w k 2 o @ t 6 .

1 1 时,f(x)=x+ +2 2 2x ∵f(x)在区间[1,+∞ ) 上为增函数,
(1)解
源 源 源

新新 新新 新新 新新
源 源 源 源 源 源 源 源















h : w w j.x g o m /w c t /p k t .c y x /

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w c t 2 .6 o x @1 c m k





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













h : w .w jx g o /m w c t /p k t .c y x /

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w c t 2 6 o x k 1 .c m @

当 a=

∴f(x)在区间[1,+∞ ) 上的最小值为 f(1)= (2)解法一
2
源 源 源

7 2

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x t 2 6 m w k 1 o c @ .c

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x @ 2 .6 m w t 1 o k c c

新新 新新 新新 新新
源 源 源 源 源 源 源 源















h : w w j.x g o m /w c t /p k t .c y x /

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w c t 2 .6 o x @1 c m k





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













h : w .w jx g o /m w c t /p k t .c y x /

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w c t 2 6 o x k 1 .c m @

在区间[1,+∞ ) 上,
新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x t 2 6 m w k 1 o c @ .c

f(x)=

x + 2x + a >0 恒成立 x2+2x+a>0 恒成立 x 设 y=x2+2x+a,x∈[1,+∞ )

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x @ 2 .6 m w t 1 o k c c

∵y=x2+2x+a=(x+1)2+a-1 递增, ∴当 x=1 时,ymin=3+a,当且仅当 ymin=3+a>0 时,函数 f(x)>0 恒成立, 故 a>-3
新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王
t /: w k t .c /w /x h w p .x y m j g o c w @ 1 .c m x c 2 o k t 6

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t /: w k t .c /w /x h w p .x y m j g o c w c 1 c m x k 2 o t @ 6 .

a +2,x∈[1,+∞ ) x 当 a≥0 时,函数 f(x)的值恒为正; 当 a<0 时,函数 f(x)递增,故当 x=1 时,f(x)min=3+a, 当且仅当 f(x)min=3+a>0 时,函数 f(x)>0 恒成立,故 a>-3
解法二
源 源 源

新新 新新 新新 新新
源 源 源 源 源 源 源 源















h : w w j.x g o m /w c t /p k t .c y x /

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w c t 2 .6 o x @1 c m k





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













h : w .w jx g o /m w c t /p k t .c y x /

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w c t 2 6 o x k 1 .c m @

f(x)=x+

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x t 2 6 m w k 1 o c @ .c

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x @ 2 .6 m w t 1 o k c c

1 ) m 1 (1)证明 当 m∈M 时,f(x)对所有实数都有意义;反之,若 f(x)对所有实数 x 都有意义,则 m∈M (2)当 m∈M 时,求函数 f(x)的最小值 (3)求证 对每个 m∈M,函数 f(x)的最小值都不小于 1 1 (1)证明 先将 f(x)变形 f(x)=log3[(x-2m)2+m+ ], m 1 1 当 m∈M 时,m>1,∴(x-m)2+m+ >0 恒成立, m 1 故 f(x)的定义域为 R 1 1 >0,令Δ<0,即 16m2-4(4m2+m+ )<0,解 反之,若 f(x)对所有实数 x 都有意义,则只须 x2-4mx+4m2+m+ m 1 m 1 得 m>1,故 m∈M
例 3 设 m 是实数,记 M={m|m>1},f(x)=log3(x2-4mx+4m2+m+
源 源 源

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x t 2 6 m w k 1 o c @ .c

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x @ 2 .6 m w t 1 o k c c

新新 新新 新新 新新
源 源 源 源 源 源 源 源















h : w w j.x g o m /w c t /p k t .c y x /

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w c t 2 .6 o x @1 c m k

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特新王 特特 特特 特特 王王 新王 王王 新新 王王
h /: w .x y .c /w x t w p k t o j g m /c x @ 1 .c m w c 2 o k t 6





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













h : w .w jx g o /m w c t /p k t .c y x /

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w c t 2 6 o x k 1 .c m @

新新新 新新 源新新源 源 源源源源 源源 源源源源 源源源源 源源 源源 特特特特 特特 特特新王 特特 王特特 新特特 王 王 王王 新新 王王
h /: w .x y .c /w x t w p k t o j g m /c x c 1 c m w k 2 o @ t 6 .

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 6 m w k 1 o c @ .c

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 .6 m w @ 1 o k c c







新新 新新 新新 新新
源 源 源 源 源 源 源 源















h : w w j.x g o m /w c t /p k t .c y x /

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w c t 2 .6 o x @1 c m k

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x t 2 6 m w k 1 o c @ .c





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













h : w .w jx g o /m w c t /p k t .c y x /

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w c t 2 6 o x k 1 .c m @

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x @ 2 .6 m w t 1 o k c c







新新 新新 新新 新新
源 源 源 源 源 源 源 源











新新 新新 新新 新新
源 源 源 源 源 源 源 源

























h : w w j.x g o m /w c t /p k t .c y x /

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w c t 2 .6 o x @1 c m k

t /p w w .x t .c m /w /c h : k y o x j g

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w x k 1 6 m c t 2 c o @ .





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源









新新新 新新 新新
源 源 源 源 源 源 源 源 源 源





















h : w .w jx g o /m w c t /p k t .c y x /

t /p w .w x t .c /m w /c h : k y o x j g

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w c t 2 6 o x k 1 .c m @

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w x @ 1 .c m c k 2 6 o t

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 6 m w k 1 o c @ .c

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 .6 m w @ 1 o k c c

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王
t /: w k t .c /w /x h w p .x y m j g o c w @ 1 .c m x c 2 o k t 6

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t /: w k t .c /w /x h w p .x y m j g o c w c 1 c m x k 2 o t @ 6 .

选校网 www.xuanxiao.com 专业大全 历年分数线 上万张大学图片 大学视频 院校库

选校网 www.xuanxiao.com 高考频道 专业大全 历年分数线 上万张大学图片 大学视频 院校库

1 , m 1 ∵y=log3u 是增函数,∴当 u 最小时,f(x)最小 1 而 u=(x-2m)2+m+ , m 1 1 显然,当 x=m 时,u 取最小值为 m+ , m 1 1 此时 f(2m)=log3(m+ )为最小值 m 1 1 1 =(m-1)+ +1≥3, (3)证明 当 m∈M 时,m+ m 1 m 1 当且仅当 m=2 时等号成立 1 ∴log3(m+ )≥log33=1 m 1 学生巩固练习 1 1 1 函数 y=x2+ (x≤- )的值域是( ) x 2
(2)解析
源 源 源

新新 新新 新新 新新
源 源 源 源 源 源 源 源















h : w w j.x g o m /w c t /p k t .c y x /

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w c t 2 .6 o x @1 c m k





新新新 新新新
源 源 源 源 源 源 源 源 源 源













h : w .w jx g o /m w c t /p k t .c y x /

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w c t 2 6 o x k 1 .c m @

设 u=x2-4mx+4m2+m+

新新新 新新源 源源源源源源新源 源 源th源p/源源源gy源源源cx/ 源 w : w j.x t m /w k o .c 特 特特特特特 特王特王新特王 新特特 特 王 王kc@ 王新 王 新1 o.c王 x t 2 6 m w

新新新 源源新源新源新源 源 源源源 源th源p源源源gy源源源cx/ 源 /: w j.x t m /w w k o .c 特 特特特特特 特王特特特特特 新王新 王 王 x @ 2 .6 m 王 w t 1 新 王kc新王oc王

新新新 新新新 源源源源源源源源 源 源th源/:w w kj.x源gty源m /w cx/ 源 源源 o.c源源 p 特 特特特特特 特王新王王特王 特特特 特 新 王kc@ 1王o.c王 王 新新 x t 2 6 m w

新新新 源源新源新源新源 源 源源源 源th源/:w w kj.x源gty源m /w cx/ 源 源源 o.c源源 p 特 特特特特特 特王特特特特王 新王王 特 新 王kc新王c王 新 x t 2 .6 m 王 w @ 1 o







新新新新 新新新新
源 源 源 源 源 源 源 源















h : w w j.x g o m /w c t /p k t .c y x /

特 特 特 特特 特 特 特 特 特特 特 王 王 新王 王 新 王w cx新t@ 21新.6c王o 王 王k m





新新新 新新新
源 源 源 源 源 源 源 源 源 源













h : w .w jx g o /m w c t /p k t .c y x /

特 特 特 特特 特 特王特王特新王特王特 新 特 王w c新tk@ 21新6.c王o 王 王 m x

新新新 新新新 源源源源源源源源 源 源th源/:w w kj.x源gty源m /w cx/ 源 源源 o.c源源 p 特 特特特特特 特王新王王特王 特特特 特 新 王kc@ 1王o.c王 王 新新 x t 2 6 m w

新新新 源源新源新源新源 源 源源源 源th源/:w w kj.x源gty源m /w cx/ 源 源源 o.c源源 p 特 特特特特特 特王特特特特王 新王王 特 新 x t 2 .6 m 王 w @ 1 o 王kc新王c王 新

新新新 新新新 源源源源源源源源 源 源th源/:w w kj.x源gty源m /w cx/ 源 源源 o.c源源 p 特 特特特特特 特王新王王特王 特特特 特 新 王kc@ 1王o.c王 王 新新 x t 2 6 m w

新新新 源源新源新源新源 源 源源源 源th源/:w w kj.x源gty源m /w cx/ 源 源源 o.c源源 p 特 特特特特特 特王特特特特王 新王王 特 新 王kc新王c王 新 x t 2 .6 m 王 w @ 1 o







新新新新 新新新新
源 源 源 源 源 源 源 源















h : w w j.x g o m /w c t /p k t .c y x /

特 特 特 特特 特 特 特 特 特特 特 王 王 新王 王 新 王w cx新t@ 21新.6c王o 王 王k m





新新新 新新新
源 源 源 源 源 源 源 源 源 源













h : w .w jx g o /m w c t /p k t .c y x /

特 特 特 特特 特 特王特王特新王特王特 新 特 王w c新tk@ 21新6.c王o 王 王 m x

新新新 新新新 源源源源源源源源 源 源th源:w w j.xk源tgy源m /w cx/ 源 源源 o.c源源 /p 特 特特特特特 特王新王王特王 特特特 特 新 王kc@ 1王o.c王 王 新新 x t 2 6 m w

新新新 源源新源新源新源 源 源源源 源th源:w w j.xk源tgy源m /w cx/ 源 源源 o.c源源 /p 特 特特特特特 特王特特特特王 新王王 特 新 王@ 王c王 新新 x t 2 .6 m 王 w k 1 o c

A (-∞,-
新新新 新新新 源源源源源源源源 源 源th源:w w j.xk源tgy源m /w cx/ 源 源源 o.c源源 /p 特 特特特特特 特王新王王特王 特特特 特 新 王kc@ 1王o.c王 王 新新 x t 2 6 m w 新新新 源源新源新源新源 源 源源源 源th源:w w j.xk源tgy源m /w cx/ 源 源源 o.c源源 /p 特 特特特特特 特王特特特特王 新王王 特 新 x t 2 .6 m 王 w k 1 o 王@ 王c王 c 新新

7 ] 4

B [-
新新新 新新新 源源源源源源源源 源 源th源/:w w kj.x源gty源m /w cx/ 源 源源 o.c源源 p 特 特特特特特 特王新王王特王 特特特 特 新 王kc@ 1王o.c王 王 新新 x t 2 6 m w 新新新 源源新源新源新源 源 源源源 源th源/:w w kj.x源gty源m /w cx/ 源 源源 o.c源源 p 特 特特特特特 特王特特特特王 新王王 特 新 x t 2 .6 m 王 w @ 1 o 王kc新王c王 新

7 ,+∞ ) 4

C[
新新新 新新新 源源源源源源源源 源 源th源/:w w kj.x源gty源m /w cx/ 源 源源 o.c源源 p 特 特特特特特 特王新王王特王 特特特 特 新 王kc@ 1王o.c王 王 新新 x t 2 6 m w 新新新 源源新源新源新源 源 源源源 源th源/:w w kj.x源gty源m /w cx/ 源 源源 o.c源源 p 特 特特特特特 特王特特特特王 新王王 特 新 x t 2 .6 m 王 w @ 1 o 王kc新王c王 新

33 2 ,+∞ ) 2

D (-∞,-
新新新 新新源 源源源源源源新源 源 源th源p/源源源gy源源源cx/ 源 w : w j.x t m /w k o .c 特 特特特特特 特王特王新特王 新特特 特 王 王kc@ 王新 王 新1 o.c王 x t 2 6 m w 新新新 源源新源新源新源 源 源源源 源th源p源源源gy源源源cx/ 源 /: w j.x t m /w w k o .c 特 特特特特特 特王特特特特特 新王新 王 王 x @ 2 .6 m 王 w t 1 新 王kc新王oc王

33 2] 2

2

新新新 新新新 源源源源源源源源 源 源th源:w w j.xk源tgy源m /w cx/ 源 源源 o.c源源 /p 特 特特特特特 特王新王王特王 特特特 特 新 王kc@ 1王o.c王 王 新新 x t 2 6 m w 新新新 源源新源新源新源 源 源源源 源th源:w w j.xk源tgy源m /w cx/ 源 源源 o.c源源 /p 特 特特特特特 特王特特特特王 新王王 特 新 x t 2 .6 m 王 w k 1 o 王@ 王c王 c 新新

函数 y=x+ 1 2 x 的值域是(
新新新 新新新 源源源源源源源源 源 源th源:w w j.xk源tgy源m /w cx/ 源 源源 o.c源源 /p 特 特特特特特 特王新王王特王 特特特 特 新 王kc@ 1王o.c王 王 新新 x t 2 6 m w 新新新 源源新源新源新源 源 源源源 源th源:w w j.xk源tgy源m /w cx/ 源 源源 o.c源源 /p 特 特特特特特 特王特特特特王 新王王 特 新 王@ 王c王 新新 x t 2 .6 m 王 w k 1 o c

) C
新新新 新新新 源源源源源源源源 源 源th源/:w w kj.x源gty源m /w cx/ 源 源源 o.c源源 p 特 特特特特特 特王新王王特王 特特特 特 新 王kc@ 1王o.c王 王 新新 x t 2 6 m w 新新新 源源新源新源新源 源 源源源 源th源/:w w kj.x源gty源m /w cx/ 源 源源 o.c源源 p 特 特特特特特 特王特特特特王 新王王 特 新 王kc新王c王 新 x t 2 .6 m 王 w @ 1 o

A 3
新新新 新新新 源源源源源源源源 源 源th源:w w j.xk源tgy源m /w cx/ 源 源源 o.c源源 /p 特 特特特特特 特王特王王特王 新特特 特 新 王kc@ 1王o.c王 王 新新 x t 2 6 m w 新新新 源源新源新源新源 源 源源源 源th源:w w j.xk源tgy源m /w cx/ 源 源源 o.c源源 /p 特 特特特特特 特王特特特特王 新王王 特 新 x t 2 .6 m 王 w k 1 o 王@ 王c王 c 新新

(-∞,1 ]

B

新新新 新新新 源源源源源源源源 源 源th源/:w w kj.x源gty源m /w cx/ 源 源源 o.c源源 p 特 特特特特特 特王新王王特王 特特特 特 新 王kc@ 1王o.c王 王 新新 x t 2 6 m w 新新新 源源新源新源新源 源 源源源 源th源/:w w kj.x源gty源m /w cx/ 源 源源 o.c源源 p 特 特特特特特 特王特特特特王 新王王 特 新 王kc新王c王 新 x t 2 .6 m 王 w @ 1 o

(-∞,-1 ]

R

D

新新新 新新源 源源源源源源新源 源 源th源p/源源源gy源源源cx/ 源 w : w j.x t m /w k o .c 特 特特特特特 特王特王新特王 新特特 特 王 王kc@ 王新 王 新1 o.c王 x t 2 6 m w 新新新 源源新源新源新源 源 源源源 源th源p源源源gy源源源cx/ 源 /: w j.x t m /w w k o .c 特 特特特特特 特王特特特特特 新王新 王 王 王kc新王oc王 x @ 2 .6 m 王 w t 1 新

[1,+∞ )

一批货物随 17 列货车从 A 市以 V 千米/小时匀速直达 B 市,已知两地铁路线长 400 千米,为了安全,两列货
新新新 新新源 源源源源源源新源 源 源h源/源源源源源源x/c 源 t : w .x y .c /w w p k t o j g m 特 特特特特特 特王特王新特王 新特特 特 王 王新王新 王 王 x @ 1 .c m w c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源h源/源源源源源源x/c 源 t : w .x y .c /w w p k t o j g m 特 特特特特特 特王特特特特特 新王新 王 王 x 新 新 王 w c 王 m 王k@ 12 c王 t o 6 .

V 2 ) 千米 ,那么这批物资全部运到 B 市,最快需要_________小时(不计货车的车身长) 20 4 设 x1、x2 为方程 4x2-4mx+m+2=0 的两个实根,当 m=_________时,x12+x22 有最小值_________ 5 某企业生产一种产品时,固定成本为 5000 元,而每生产 100 台产品时直接消耗成本要增加 2500 元,市场对此 1 商品年需求量为 500 台,销售的收入函数为 R(x)=5x- x2(万元)(0≤x≤5),其中 x 是产品售出的数量(单位 百台) 2 (1)把利润表示为年产量的函数; (2)年产量多少时,企业所得的利润最大? (3)年产量多少时,企业才不亏本? 6 已知函数 f(x)=lg[(a2-1)x2+(a+1)x+1] (1)若 f(x)的定义域为(-∞,+∞),求实数 a 的取值范围; (2)若 f(x)的值域为(-∞,+∞),求实数 a 的取值范围 7 某家电生产企业根据市场调查分析,决定调整产品生产方案,准备每周(按 120 个工时计算)生产空调器、彩电、 冰箱共 360 台,且冰箱至少生产 60 台 已知生产家电产品每台所需工时和每台产值如下表 家电名称 空调器 彩电 冰箱
车间距离不得小于(
新新新 新新新 源源源源源源源源 源 源th源:w w j.xk源tgy源m /w cx/ 源 源源 o.c源源 /p 特 特特特特特 特王新王王特王 特特特 特 新 王kc@ 1王o.c王 王 新新 x t 2 6 m w 新新新 源源新源新源新源 源 源源源 源th源:w w j.xk源tgy源m /w cx/ 源 源源 o.c源源 /p 特 特特特特特 特王特特特特王 新王王 特 新 x t 2 .6 m 王 w k 1 o 王@ 王c王 c 新新 新新新 新新源 源源源源源源新源 源 源h源/源源源源源源x/c 源 t : w .x y .c /w w p k t o j g m 特 特特特特特 特王特王新特王 新特特 特 王 王新王新 王 王 x @ 1 .c m w c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源h源/源源源源源源x/c 源 t : w .x y .c /w w p k t o j g m 特 特特特特特 特王特特特特特 新王新 王 王 x 新 新 王 w c 王 m 王k@ 12 c王 t o 6 . 新新新 新新新 源源源源源源源源 源 源th源:w w j.xk源tgy源m /w cx/ 源 源源 o.c源源 /p 特 特特特特特 特王新王王特王 特特特 特 新 王kc@ 1王o.c王 王 新新 x t 2 6 m w 新新新 源源新源新源新源 源 源源源 源th源:w w j.xk源tgy源m /w cx/ 源 源源 o.c源源 /p 特 特特特特特 特王特特特特王 新王王 特 新 x t 2 .6 m 王 w k 1 o 王@ 王c王 c 新新
源 源 源

新新新新 新新新新
源 源 源 源 源 源 源 源















t : w w j.x t o m /w c h p / k g .c y x /

特 特 特 特特 特 特 特 特 特特 特 王 王 新王 王 新 王w 王tk@ 21新.6c王m 王 c x 新 o





新新新 新新新
源 源 源 源 源 源 源 源 源 源













t : w .w jx t o m w c h p / k g .c / x / y

特 特 特 特特 特 特王特王特新特特王特 新 王 王w 王tk@ 新6.c王m 王 新 21 o c x

新新新 新新新 源源源源源源源源 源 源th源:w w j.xk源tgy源m /w cx/ 源 源源 o.c源源 /p 特 特特特特特 特王特王王特王 新特特 特 新 王kc@ 1王o.c王 王 新新 x t 2 6 m w

新新新 源源新源新源新源 源 源源源 源th源:w w j.xk源tgy源m /w cx/ 源 源源 o.c源源 /p 特 特特特特特 特王特特特特王 新王王 特 新 x t 2 .6 m 王 w k 1 o 王@ 王c王 c 新新

新新新 新新源 源源源源源源新源 源 源th源p/源源源gy源源源cx/ 源 w : w j.x t m /w k o .c 特 特特特特特 特王特王新特王 新特特 特 王 王kc@ 王新 王 新1 o.c王 x t 2 6 m w

新新新 源源新源新源新源 源 源源源 源th源p源源源gy源源源cx/ 源 /: w j.x t m /w w k o .c 特 特特特特特 特王特特特特特 新王新 王 王 x @ 2 .6 m 王 w t 1 新 王kc新王oc王

新新新 新新新 源源源源源源源源 源 源th源:w w j.xk源tgy源m /w cx/ 源 源源 o.c源源 /p 特 特特特特特 特王新王王特王 特特特 特 新 王kc@ 1王o.c王 王 新新 x t 2 6 m w

新新新 源源新源新源新源 源 源源源 源th源:w w j.xk源tgy源m /w cx/ 源 源源 o.c源源 /p 特 特特特特特 特王特特特特王 新王王 特 新 x t 2 .6 m 王 w k 1 o 王@ 王c王 c 新新







新新新新 新新新新
源 源 源 源 源 源 源 源















t p w w k g o m /w c h /: j.x y .c t x /

新新新 新新新 源源源源源源源源 源 源th源/:w w kj.x源gty源m /w cx/ 源 源源 o.c源源 p 特 特特特特特 特王新王王特王 特特特 特 新 王kc@ 1王o.c王 王 新新 x t 2 6 m w

特 特 特 特特 特 特 特 特 特特 特 王 王 新王 王 新 王w 王@ 21新c.6王o 王 c t x k 新 m

新新新 源源新源新源新源 源 源源源 源th源/:w w kj.x源gty源m /w cx/ 源 源源 o.c源源 p 特 特特特特特 特王特特特特王 新王王 特 新 x t 2 .6 m 王 w @ 1 o 王kc新王c王 新





新新新 新新新
源 源 源 源 源 源 源 源 源 源













t p w .w k g o /m w c h /: jx y .c t x /

特 特 特 特特 特 特王特王特新特特王特 新 王 王w 王tk@ 新6.c王o 王 新 21 m c x

1 1 1 2 3 4 4 3 2 产值(千元) 问每周应生产空调器、彩电、冰箱各多少台,才能使产值最高?最高产值是多少?(以千元为单位) 8 在 Rt△ABC 中,∠C=90°,以斜边 AB 所在直线为轴将△ABC 旋转一周生成两个圆锥,设这两个圆锥的侧面 BC + CA =x 积之积为 S1,△ABC 的内切圆面积为 S2,记 AB
工时
新新新 新新新 源源源源源源源源 源 源th源:w w j.xk源tgy源m /w cx/ 源 源源 o.c源源 /p 特 特特特特特 特王新王王特王 特特特 特 新 王kc@ 1王o.c王 王 新新 x t 2 6 m w 新新新 源源新源新源新源 源 源源源 源th源:w w j.xk源tgy源m /w cx/ 源 源源 o.c源源 /p 特 特特特特特 特王特特特特王 新王王 特 新 x t 2 .6 m 王 w k 1 o 王@ 王c王 c 新新 新新新 新新源 源源源源源源新源 源 源th源p/源源源gy源源源cx/ 源 w : w j.x t m /w k o .c 特 特特特特特 特王特王新特王 新特特 特 王 王kc@ 王新 王 新1 o.c王 x t 2 6 m w 新新新 源源新源新源新源 源 源源源 源th源p源源源gy源源源cx/ 源 /: w j.x t m /w w k o .c 特 特特特特特 特王特特特特特 新王新 王 王 x @ 2 .6 m 王 w t 1 新 王kc新王oc王

选校网 www.xuanxiao.com 专业大全 历年分数线 上万张大学图片 大学视频 院校库

选校网 www.xuanxiao.com 高考频道 专业大全 历年分数线 上万张大学图片 大学视频 院校库

(1)求函数 f(x)=

S1 的解析式并求 f(x)的定义域 S2
新新新 新新新 源源源源源源源源 源 源th源/:w w kj.x源gty源m /w cx/ 源 源源 o.c源源 p 特 特特特特特 特王新王王特王 特特特 特 新 王kc@ 1王o.c王 王 新新 x t 2 6 m w 新新新 源源新源新源新源 源 源源源 源th源/:w w kj.x源gty源m /w cx/ 源 源源 o.c源源 p 特 特特特特特 特王特特特特王 新王王 特 新 x t 2 .6 m 王 w @ 1 o 王kc新王c王 新

新新新 新新源 源源源源源源新源 源 源th源p/源源源gy源源源cx/ 源 w : w j.x t m /w k o .c 特 特特特特特 特王特王新特王 新特特 特 王 王kc@ 王新 王 新1 o.c王 x t 2 6 m w 新新新 源源新源新源新源 源 源源源 源th源p源源源gy源源源cx/ 源 /: w j.x t m /w w k o .c 特 特特特特特 特王特特特特特 新王新 王 王 王kc新王oc王 x @ 2 .6 m 王 w t 1 新

(2)求函数 f(x)的最小值 参考答案 1
新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王
t : w j.x t m /w c h w /p k g o y .c x / x t 2 6 m w k 1 o c @ .c
源 源 源

新新 新新 新新 新新
源 源 源 源 源 源 源 源















h : w w j.x g o m /w c t /p k t .c y x /

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w c t 2 .6 o x @1 c m k





新新新 新新新
源 源 源 源 源 源 源 源 源 源













h : w .w jx g o /m w c t /p k t .c y x /

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w c t 2 6 o x k 1 .c m @

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t : w j.x t m /w c h w /p k g o y .c x / x t 2 .6 m w k 1 o @ c c

解析







新新 新新 新新 新新
源 源 源 源 源 源 源 源















h : w w j.x g o m /w c t /p k t .c y x /

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w c t 2 .6 o x @1 c m k





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













h : w .w jx g o /m w c t /p k t .c y x /

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w c t 2 6 o x k 1 .c m @

∵m1=x2 在(-∞,-

1 1 1 1 1 )上是减函数,m2= 在(-∞,- )上是减函数,∴y=x2+ 在 x∈(-∞,- ) 2 x 2 x 2

上为减函数, ∴y=x2+ 答案 2
新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王
t : w j.x t m /w c h w /p k g o y .c x / x t 2 6 m w k 1 o c @ .c
源 源 源

新新 新新 新新 新新
源 源 源 源 源 源 源 源















h : w w j.x g o m /w c t /p k t .c y x /

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w c t 2 .6 o x @1 c m k





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













h : w .w jx g o /m w c t /p k t .c y x /

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w c t 2 6 o x k 1 .c m @

1 1 7 (x≤- )的值域为[- ,+∞ ) x 2 4 B
源 源 源

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x t 2 6 m w k 1 o c @ .c

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x @ 2 .6 m w t 1 o k c c

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t : w j.x t m /w c h w /p k g o y .c x / x t 2 .6 m w k 1 o @ c c

解析

新新 新新 新新 新新
源 源 源 源 源 源 源 源















h : w w j.x g o m /w c t /p k t .c y x /

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w c t 2 .6 o x @1 c m k





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













h : w .w jx g o /m w c t /p k t .c y x /

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w c t 2 6 o x k 1 .c m @

令 1 2 x =t(t≥0),则 x=

1 t2 2

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 6 m w k 1 o c @ .c

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 .6 m w @ 1 o k c c

∵y=

1 t2 1 +t=- (t-1)2+1≤1 2 2 ∴值域为(-∞,1 ]
新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 6 m w k 1 o c @ .c

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 .6 m w @ 1 o k c c

答案 3
新新新 新新源 源源新新 源 源源源源 源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王
t : w j.x t m /w c h w /p k g o y .c x / x t 2 6 m w k 1 o c @ .c







新新 新新 新新 新新
源 源 源 源 源 源 源 源















h : w w j.x g o m /w c t /p k t .c y x /

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w c t 2 .6 o x @1 c m k





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













h : w .w jx g o /m w c t /p k t .c y x /

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w c t 2 6 o x k 1 .c m @

A
源 源 源

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t : w j.x t m /w c h w /p k g o y .c x / x t 2 .6 m w k 1 o @ c c

解析
源 源 源

新新 新新 新新 新新
源 源 源 源 源 源 源 源















h : w w j.x g o m /w c t /p k t .c y x /

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w c t 2 .6 o x @1 c m k





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













h : w .w jx g o /m w c t /p k t .c y x /

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w c t 2 6 o x k 1 .c m @

t=

400 V 2 400 16V +16×( ) /V= + ≥2 16 =8 V 20 V 400

新新新 新新源 源源新新 源 源源源源 源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x t 2 6 m w k 1 o c @ .c

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x @ 2 .6 m w t 1 o k c c

答案 4
新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王
t : w j.x t m /w c h w /p k g o y .c x / x t 2 6 m w k 1 o c @ .c

新新 新新 新新 新新
源 源 源 源 源 源 源 源















h : w w j.x g o m /w c t /p k t .c y x /

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w c t 2 .6 o x @1 c m k





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













h : w .w jx g o /m w c t /p k t .c y x /

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w c t 2 6 o x k 1 .c m @

8
源 源 源

m+2 , 4 m+2 1 17 ∴x12+x22=(x1+x2)2-2x1x2=m2- =(m- )2- , 2 4 16 又 x1,x2 为实根,∴Δ≥0 ∴m≤-1 或 m≥2, 1 17 1 y=(m- )2- 在区间(-∞,1)上是减函数,在[2,+∞ ) 上是增函数,又抛物线 y 开口向上且以 m= 为对称轴 4 16 4 故 m=1 时, 1 ymin= 2 1 答案 -1 2 5 解 (1)利润 y 是指生产数量 x 的产品售出后的总收入 R(x)与其总成本 C(x)之差,由题意,当 x≤5 时,产 品能全部售出,当 x>5 时,只能销售 500 台,所以
新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t : w j.x t m /w c h w /p k g o y .c x / x t 2 .6 m w k 1 o @ c c

解析

新新 新新 新新 新新
源 源 源 源 源 源 源 源















h : w w j.x g o m /w c t /p k t .c y x /

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w c t 2 .6 o x @1 c m k





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













h : w .w jx g o /m w c t /p k t .c y x /

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w c t 2 6 o x k 1 .c m @

由韦达定理知







新新 新新 新新 新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w x k 1 6 m c t 2 c o @ .





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w x @ 1 .c m c k 2 6 o t

x1+x2=m,x1x2=

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 6 m w k 1 o c @ .c

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 .6 m w @ 1 o k c c

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王
h /: w .x y .c /w x t w p k t o j g m /c x @ 1 .c m w c 2 o k t 6

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
h /: w .x y .c /w x t w p k t o j g m /c x c 1 c m w k 2 o @ t 6 .

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王
t : w .x t .c /w /x h w /p k y m j g o c x c 1 .c m w @ 2 o k t 6

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t : w .x t .c /w /x h w /p k y m j g o c x c 1 c m w k 2 o t @ 6 .







新新 新新 新新 新新
源 源 源 源 源 源 源 源















h : w w j.x g o m /w c t /p k t .c y x /

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w c t 2 .6 o x @1 c m k





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













h : w .w jx g o /m w c t /p k t .c y x /

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w c t 2 6 o x k 1 .c m @







新新 新新 新新 新新
源 源 源 源 源 源 源 源















h : w w j.x g o m /w c t /p k t .c y x /

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王
t : w j.x t m /w c h w /p k g o y .c x / x t 2 6 m w k 1 o c @ .c

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w c t 2 .6 o x @1 c m k

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t : w j.x t m /w c h w /p k g o y .c x / x t 2 .6 m w k 1 o @ c c





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













h : w .w jx g o /m w c t /p k t .c y x /

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w c t 2 6 o x k 1 .c m @

1 2 1 2 5 x 2 x (0.5 + 0.25 x )(0 ≤ x ≤ 5) 4.75 x x 0.5(0 ≤ x ≤ 5) y= = 2 (5 × 5 1 × 52 ) (0.5 + 0.25 x )( x > 5) 12 0.25 x ( x > 1) 2 1 2 x +4 75x-0 2 时,y<12-0 25×5=10 75(万元) , 所以当生产 475 台时,利润最大
(2)在 0≤x≤5 时,y=-
新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王
t /: w k t .c /w /x h w p .x y m j g o c w @ 1 .c m x c 2 o k t 6

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 6 m w k 1 o c @ .c

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 6 m w k 1 o c @ .c

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 .6 m w @ 1 o k c c

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 .6 m w @ 1 o k c c

5,当 x=-

b =4 2a

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x t 2 6 m w k 1 o c @ .c

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x @ 2 .6 m w t 1 o k c c

75(百台)时,ymax=10

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x t 2 6 m w k 1 o c @ .c

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x @ 2 .6 m w t 1 o k c c

78125(万元) ,当 x>5(百台)

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 6 m w k 1 o c @ .c

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t /: w k t .c /w /x h w p .x y m j g o c w c 1 c m x k 2 o t @ 6 .

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 .6 m w @ 1 o k c c

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 6 m w k 1 o c @ .c

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 .6 m w @ 1 o k c c

选校网 www.xuanxiao.com 专业大全 历年分数线 上万张大学图片 大学视频 院校库

选校网 www.xuanxiao.com 高考频道 专业大全 历年分数线 上万张大学图片 大学视频 院校库

0 ≤ x ≤ 5 x > 5 (3)要使企业不亏本,即要求 1 2 或 2 x + 4.75 x 0.5 ≥ 0 12 0.25 x ≥ 0
解得 5≥x≥4 业不亏本 解 6
新新新 新新新 源源源源源源源源 源 源th源/:w 源k.x源源.cm /w /xc 源 源w j tyg o源源 p 特 特特特特特 特王新王王特王 特特特 特 新 王@ 1王.c王m 王 新新 w c 2 o x k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源k.x源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特王 新王王 特 新 w 新 c m 王 王ckt@ 王王 x 1 o 2 新 6 . 新新新 新新新 源源源源源源源源 源 源th源:w w j.xk源tgy源m /w cx/ 源 源源 o.c源源 /p 特 特特特特特 特王新王王特王 特特特 特 新 王kc@ 1王o.c王 王 新新 x t 2 6 m w 新新新 源源新源新源新源 源 源源源 源th源:w w j.xk源tgy源m /w cx/ 源 源源 o.c源源 /p 特 特特特特特 特王特特特特王 新王王 特 新 x t 2 .6 m 王 w k 1 o 王@ 王c王 c 新新 新新新 新新新 源源源源源源源源 源 源th源/:w 源k.x源源.cm /w /xc 源 源w j tyg o源源 p 特 特特特特特 特王新王王特王 特特特 特 新 王@ 1王.c王m 王 新新 w c 2 o x k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源k.x源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特王 新王王 特 新 w 新 c m 王 王ckt@ 王王 x 1 o 2 新 6 .

75- 21.5625 ≈0

新新新 新新新 源源源源源源源源 源 源th源/:w w kj.x源gty源m /w cx/ 源 源源 o.c源源 p 特 特特特特特 特王新王王特王 特特特 特 新 王kc@ 1王o.c王 王 新新 x t 2 6 m w 新新新 源源新源新源新源 源 源源源 源th源/:w w kj.x源gty源m /w cx/ 源 源源 o.c源源 p 特 特特特特特 特王特特特特王 新王王 特 新 x t 2 .6 m 王 w @ 1 o 王kc新王c王 新

1(百台)或 5<x<48(百台)时,即企业年产量在 10 台到 4800 台之间时,企







新新 新新 新新 新新
源 源 源 源 源 源 源 源















h : w w j.x g o m /w c t /p k t .c y x /

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w c t 2 .6 o x @1 c m k





新新新 新新新
源 源 源 源 源 源 源 源 源 源













h : w .w jx g o /m w c t /p k t .c y x /

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w c t 2 6 o x k 1 .c m @

(1 ) 依 题 意 (a2 - 1 ) x2+(a+1)x+1>0 对 一 切 x ∈ R 恒 成 立 , 当 a2 - 1 ≠ 0 时 , 其 充 要 条 件 是

a > 1或a < 1 a 2 1 > 0 ,即 , 5 2 2 = (a + 1) 4( a 1) < 0 a > 或a < 1 3
∴a<-1 或 a>

5 3 又 a=-1 时,f(x)=0 满足题意,a=1 时不合题意 5 故 a≤-1 或 a>为 所求 3
新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 6 m w k 1 o c @ .c

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 .6 m w @ 1 o k c c

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x t 2 6 m w k 1 o c @ .c

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x @ 2 .6 m w t 1 o k c c

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 6 m w k 1 o c @ .c

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 .6 m w @ 1 o k c c

a 2 1 > 0 (2)依题意只要 t=(a2-1)x2+(a+1)x+1 能取到(0,+∞)上的任何值,则 f(x)的值域为 R,故有 ,解得 1<a ≥ 0


5 5 ,又当 a2-1=0 即 a=1 时,t=2x+1 符合题意而 a=-1 时不合题意,∴1≤a≤ 为所求 3 3 7 解 设每周生产空调器、彩电、冰箱分别为 x 台、y 台、z 台,由题意得 x+y+z=360 ① 1 1 1 x + y + z = 120 ② 2 3 4 x>0,y>0,z≥60 ③ 假定每周总产值为 S 千元,则 S=4x+3y+2z,在限制条件①②③之下,为求目标函数 S 的最大值,由①②消去 z,得 y=360-3x ④ 将④代入①得 x+(360-3x)+z=360,∴z=2x ⑤ ∵z≥60,∴x≥30 ⑥ 再将④⑤代入 S 中,得 S=4x+3(360-3x)+22x,即 S=-x+1080 由条件⑥及上式知,当 x=30 时,产值 S 最大,最大值为 S=-30+1080=1050(千元) 得 x=30 分别代入④和⑤得 y=360-90=270,z=2×30=60 ∴每周应生产空调器 30 台,彩电 270 台,冰箱 60 台,才能使产值最大,最大产值为 1050 千元 ab 8 解 (1)如图所示 设 BC=a,CA=b,AB=c,则斜边 AB 上的高 h= , c πab a+bc 2 ∴S1=πah+πbh= ( a + b), S 2 = π ( ) ,, c 2
新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x t 2 6 m w k 1 o c @ .c

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x @ 2 .6 m w t 1 o k c c







新新 新新 新新 新新
源 源 源 源 源 源 源 源











新新 新新 新新 新新
源 源 源 源 源 源 源 源

























h : w w j.x g o m /w c t /p k t .c y x /

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王
t : w j.x t m /w c h w /p k g o y .c x / x t 2 6 m w k 1 o c @ .c

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w c t 2 .6 o x @1 c m k

t p w w k g o m /w c h /: j.x y .c t x /

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w c @2 c o x t 1 .6 m k

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t : w j.x t m /w c h w /p k g o y .c x / x t 2 .6 m w k 1 o @ c c





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源









新新新 新新 新新
源 源 源 源 源 源 源 源 源 源





















h : w .w jx g o /m w c t /p k t .c y x /

t p w .w k g o /m w c h /: jx y .c t x /

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w c t 2 6 o x k 1 .c m @

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w c t 2 6 o x k 1 .c m @

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王
t /: w k t .c /w /x h w p .x y m j g o c w @ 1 .c m x c 2 o k t 6

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t /: w k t .c /w /x h w p .x y m j g o c w c 1 c m x k 2 o t @ 6 .

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王
t /: w k t .c /w /x h w p .x y m j g o c w @ 1 .c m x c 2 o k t 6

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t /: w k t .c /w /x h w p .x y m j g o c w c 1 c m x k 2 o t @ 6 .







新新 新新 新新 新新
源 源 源 源 源 源 源 源















h : w w j.x g o m /w c t /p k t .c y x /

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w c t 2 .6 o x @1 c m k





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













h : w .w jx g o /m w c t /p k t .c y x /

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w c t 2 6 o x k 1 .c m @

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 6 m w k 1 o c @ .c

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 .6 m w @ 1 o k c c

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x t 2 6 m w k 1 o c @ .c

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x @ 2 .6 m w t 1 o k c c

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 6 m w k 1 o c @ .c

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 .6 m w @ 1 o k c c

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x t 2 6 m w k 1 o c @ .c

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x @ 2 .6 m w t 1 o k c c

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x t 2 6 m w k 1 o c @ .c

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x @ 2 .6 m w t 1 o k c c







新新 新新 新新 新新
源 源 源 源 源 源 源 源











新新 新新 新新 新新
源 源 源 源 源 源 源 源

























h : w w j.x g o m /w c t /p k t .c y x /

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王
t : w j.x t m /w c h w /p k g o y .c x / x t 2 6 m w k 1 o c @ .c

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w c t 2 .6 o x @1 c m k

t /p w w .x t .c m /w /c h : k y o x j g

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w x k 1 6 m c t 2 c o @ .

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t : w j.x t m /w c h w /p k g o y .c x / x t 2 .6 m w k 1 o @ c c





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源









新新新 新新 新新
源 源 源 源 源 源 源 源 源 源





















h : w .w jx g o /m w c t /p k t .c y x /

t /p w .w x t .c /m w /c h : k y o x j g

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w c t 2 6 o x k 1 .c m @

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w x @ 1 .c m c k 2 6 o t

∴f(x)=

S1 4ab( a + b) = S 2 c( a + b c ) 2


b

C

a

B A c 选校网 www.xuanxiao.com 专业大全 历年分数线 上万张大学图片 大学视频 院校库

选校网 www.xuanxiao.com 高考频道 专业大全 历年分数线 上万张大学图片 大学视频 院校库

a + b = cx a + b =x 又 c c2 ab = ( x 2 1) a 2 + b 2 = c 2 2
代入①消 c,得 f(x)=

2( x 2 + x ) x 1

新新新 新新新 源源源源源源源源 源 源th源/:w w kj.x源gty源m /w cx/ 源 源源 o.c源源 p 特 特特特特特 特王新王王特王 特特特 特 新 王kc@ 1王o.c王 王 新新 x t 2 6 m w 新新新 源源新源新源新源 源 源源源 源th源/:w w kj.x源gty源m /w cx/ 源 源源 o.c源源 p 特 特特特特特 特王特特特特王 新王王 特 新 x t 2 .6 m 王 w @ 1 o 王kc新王c王 新

在 Rt△ABC 中,有 a=csinA,b=ccosA(0<A< x=

π
2

) ,则
新新新 新新源 源源源源源源新源 源 源th源p/源源源gy源源源cx/ 源 w : w j.x t m /w k o .c 特 特特特特特 特王特王新特王 新特特 特 王 王kc@ 王新 王 新1 o.c王 x t 2 6 m w 新新新 源源新源新源新源 源 源源源 源th源p源源源gy源源源cx/ 源 /: w j.x t m /w w k o .c 特 特特特特特 特王特特特特特 新王新 王 王 王kc新王oc王 x @ 2 .6 m 王 w t 1 新

a+b π =sinA+cosA= 2 sin(A+ ) c 4

新新新 新源新 源源源源新源源源 源 源th源/:w w kj.x源gty源m /w cx/ 源 源源 o.c源源 p 特 特特特特特 特王新王王特王 特特特 特 新 王kc@ 1王o.c王 王 新新 x t 2 6 m w 新新新 源源新源新源新源 源 源源源 源th源/:w w kj.x源gty源m /w cx/ 源 源源 o.c源源 p 特 特特特特特 特王特特特特王 新王王 特 新 王kc新王c王 新 x t 2 .6 m 王 w @ 1 o

∴1<x≤ 2

2( x 2 + x ) 2 = 2[( x 1) + ] +6, x 1 x 1 2 设 t=x-1,则 t∈(0, 2 -1),y=2(t+ )+6 t
(2)f(x)= 在(0, 2 -1 ] 上是减函数, ∴当 x=( 2 -1)+1= 2 时,f(x)的最小值为 6 2 +8
新新新 新新源 源源源源源源新源 源 源th源p/源源源gy源源源cx/ 源 w : w j.x t m /w k o .c 特 特特特特特 特王特王新特王 新特特 特 王 王kc@ 王新 王 新1 o.c王 x t 2 6 m w 新新新 源源新源新源新源 源 源源源 源th源p源源源gy源源源cx/ 源 /: w j.x t m /w w k o .c 特 特特特特特 特王特特特特特 新王新 王 王 王kc新王oc王 x @ 2 .6 m 王 w t 1 新

选校网 www.xuanxiao.com 专业大全 历年分数线 上万张大学图片 大学视频 院校库

选校网 www.xuanxiao.com 高考频道 专业大全 历年分数线 上万张大学图片 大学视频 院校库

选校网 www.xuanxiao.com 专业大全 历年分数线 上万张大学图片 大学视频 院校库

选校网 www.xuanxiao.com 高考频道 专业大全 历年分数线 上万张大学图片 大学视频 院校库

选校网 www.xuanxiao.com 高考频道 专业大全 历年分数线 上万张大学图片 大学视频 院校库 (按 ctrl 点击打开)

选校网(www.xuanxiao.com)是为高三同学和家长提 供高考选校信息的一个网站。国内目前有 2000 多 所高校,高考过后留给考生和家长选校的时间紧、高校多、专业数量更是庞大,高考选校信息纷繁、复 杂, 高三 同学在面对高考选校时会不知所措。 选校网就是为考生整理高考信息, 这里有 1517 专业介绍, 近 2000 所高校简介、图片、视频信息。选校网,力致成为您最 强有力的选校工具! 产品介绍: 1.大学搜索:介绍近 2000 所高校最详细的大学信息,包括招生简章,以及考生最需要的学校招生办公 室联系方式及学校地址等. 2.高校专业搜索:这里包含了中国 1517 个专业介绍,考生查询专业一目了然,同时包含了专业就业信 息,给考生报考以就业参考。 3.图片搜索:这里有 11 万张全国高校清晰图片,考生查询学校环境、校园风景可以一览无余。4 视频搜 索:视频搜索包含了 6162 个视频信息,大学视频、城市视频、访谈视频都会在考生选校时给考生很大 帮助。 5.问答:对于高考选校信息或者院校还有其他疑问将自己的问题写在这里,你会得到详尽解答。6 新闻: 高考新闻、大学新闻、报考信息等栏目都是为考生和家长量身定做,和同类新闻网站相比更有针对性。 7.千校榜:把高校分成各类,让考生选校时根据类别加以区分,根据排名选择自己喜欢的高校。8 选校 课堂:这里全部的信息都是以考生选校、选校技巧、经验为核心,让专家为您解答高考选校的经验和技 巧。 9.阳光大厅:考生经过一年紧张的学习生活心理压力有待缓解和释放,阳光大厅给家长以心灵启示,给 考生心里以阳光。 10.港澳直通:很多考生都梦想去香港澳门读大学,港澳直通,给考生的梦想一个放飞的地方,港澳直 通囊括了港澳大学的所有信息,将一切更直观的呈现给考生。 11.选校社区:注册您真是的信息,在这里可以和大家分享您所在城市的到校信息,读到好的选校文章 也可以拿到这里,让大家共同品尝,您还可以加入到不同的大学、专业、城市群组,和大家一起讨论这 些话题分享信息。 选校网,为你整合众多高考选校信息,只为考生、家长能够从中受益。让我们共同为考生的未来,努力! 我们在不断完善,以更加符合家长和同学们的需求。 陆续我们将推出城市印象频道,让大家了解学校所在城市的详细情况;预报名系统(yubaoming.com), 为您更加准确地根据高考分数填报志愿提供利器....... 一切,贵在真实。

选校网 www.xuanxiao.com 专业大全 历年分数线 上万张大学图片 大学视频 院校库



推荐相关:

求值域的几种常用方法

值域的几种常用方法_高一数学_数学_高中教育_教育专区。求值域的几种常用方法 (1)配方法:对于(可化为)“二次函数型”的函数常用配方法,如求函数 y ? ? ...


二轮复习之求函数值域常用方法及值域的应用(基础篇)

二轮复习之求函数值域常用方法及值域的应用(基础篇)适用学科 适用区域 知识点高中数学 人教版 1、求函数值域的常见方法 2、运用函数的值域解决实际问题 1、 掌握...


求函数值域的几种常见方法详解

2、求函数的值域 ① y ? x? 2? x ; 答案:值域是(- ? ,② y ? x? 2? x 9 ]. 4 答案:值域是 { y y ? ?2} 小结:求函数值域的基本方法(...


求函数值域的常用方法

函数值域的常用方法镇原县开边中学 张宏立内容摘要:函数是中学数学重要的基本概念之一,它与代数式、方程、不等 式、三角函数等内容密切联系,应用十分广泛。函数...


求值域的常用方法

值域的常用方法_人力资源管理_经管营销_专业资料。4、反函数法 适用类型: ...如两点的距离公 式直线斜率等等,这类题目若运用数形结合法,往往会更加简单,一...


函数值域的求法大全

的应用十分 广泛。 练习:求函数 y= x ? 1 ? x 的值域。 (答案: {y...x 利用判别式求值域时应注意的问题用判别式法求值域是求函数值域的常用方法,但...


求函数的值域的方法大全

函数值域方法大全(一) 、最值与值域的高考地位 传统高考数学中的应用题中凡涉及到利润最大(或最小) , 最少的人力、物力等,均可归结于最值与值域的求解;...


求函数值域的常用方法

方法灵活多 样,在高考中经常出现,占有一定的地位,因此能熟练掌握其值域(最值)求法就显得 十分的重要,求解过程中若方法运用适当,就能起到简化运算过程,避繁就简...


高中数学求函数值域的7类题型和16种方法

函数值域的 7 类题型和 16 种方法一、函数值域基本知识 1.定义:在函数 y...可以考虑运用代数或三角代换,将所给 函数化成值域简单的熟悉的容易确定的基本...


求初等函数的值域方法大全

则不同的函数 f 的个数为 2 分离常数法 分离常数,是高中数学的常用方法,...该方法在求函数值域中也有非常广泛的应用,今天我们就一起来 看看如何用分离常数...

网站首页 | 网站地图
All rights reserved Powered by 学霸学习网 www.tceic.com
copyright ©right 2010-2021。
文档资料库内容来自网络,如有侵犯请联系客服。zhit325@126.com